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Structural Dynamics

10.1 INTRODUCTION

In addition to static analyses, the finite element method is a powerful tool for
analyzing the dynamic response of structures. As illustrated in Chapter 7, the
finite element method in combination with the finite difference method can be
used to examine the transient response of heat transfer situations. A similar
approach can be used to analyze the transient dynamic response of mechanical
structures. However, in the analysis of structures, an additional tool is available.
The tool, known as modal analysis, has its basis in the fact that every mechani-
cal structure exhibits natural modes of vibration (dynamic response) and these
modes can be readily computed given the elastic and inertia characteristics of the
structure.

In this chapter, we introduce the concept of natural modes of vibration via the
simple harmonic oscillator system. Using the finite element concepts developed
in earlier chapters, the simple harmonic oscillator is represented as a finite element
system and the basic ideas of natural frequency and natural mode are introduced.
The single degree of freedom simple harmonic oscillator is then extended to mul-
tiple degrees of freedom, to illustrate the existence of multiple natural frequencies
and vibration modes. From this basis, we proceed to more general dynamic analy-
ses using the finite element method.

10.2 THE SIMPLE HARMONIC OSCILLATOR

The so-called simple harmonic oscillator is a combination of a linear elastic
spring having free length L and a concentrated mass as shown in Figure 10.1a.
The mass of the spring is considered negligible. The system is assumed to be
subjected to gravity in the vertical direction, and the upper end of the spring is
attached to a rigid support. With the system in equilibrium as in Figure 10.1b, the
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Figure 10.1

(a) Simple harmonic oscillator. (b) Static equiliorium
position. (c) Free-body diagram for arbitrary
position x.

gravitational force is in equilibrium with the spring force so

Y Fo=0=mg—kd, (10.1)

where 8y, is the equilibrium elongation of the spring and x is measured positive
downward from the equilibrium position; that is, when x = 0, the system is at its
equilibrium position.

If, by some action, the mass is displaced from its equilibrium position,
the force system becomes unbalanced, as shown by the free-body diagram of
Figure 10.1c. We must apply Newton’s second law to obtain

) ZFX = may =mdz—x =mg — k(dy + x) (10.2)
dr? ‘
Incorporating the equilibrium condition expressed by Equation 10.1, Equation 10.2
becomes
d*x
mﬁ—l—kx =0 (10.3)

Equation 10.3 is a second-order, linear, ordinary differential equation with con-
stant coefficients. (And physically, we assume that the coefficients m and k are
positive.) Equation 10.3 is most-often expressed in the form
L N (10.4)
— 4+ —x=—+4+o0x= .
drz2  m dr?
The general solution for Equation 10.4 is
x(t) = Asin wf + B cos wt (10.5)

where A and B are the constants of integration. Recall that the solution of a
second-order differential equation requires the specification of two constants to
determine the solution to a specific problem. When the differential equation de-
scribes the time response of a mechanical system, the constants of integration are
most-often called the initial conditions.
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Equation 10.5 shows that the variation of displacement of the mass as a func-
tion of time is periodic. Using basic trigonometric identities, Equation 10.5 can
be equivalently expressed as

x(t) = C sin(wt + ¢) (10.6)

where the constants A and B have been replaced by constants of integration C and
¢. Per Equation 10.6, the mass oscillates sinusoidally at circular frequency » and
with constant amplitude C. Phase angle ¢ is indicative of position at time 0 since
x(0) = C sin ¢. Also, note that, since x(¢) is measured about the equilibrium
position, the oscillation occurs about that position. The circular frequency is

[ k
o = 4/ — rad/sec (10.7)
m

and is a constant value determined by the physical characteristics of the system.
In this simple case, the natural circular frequency, as it is often called, depends
on the spring constant and mass only. Therefore, if the mass is displaced from the
equilibrium position and released, the oscillatory motion occurs at a constant
frequency determined by the physical parameters of the system. In the case
described, the oscillatory motion is described as free vibration, since the system
is free of all external forces excepting gravitational attraction.

Next, we consider the simple harmonic oscillator in the finite element con-
text. From Chapter 2, the stiffness matrix of the spring is

. 1 -1
[k”]=k[_1 1] (10.8)

and the equilibrium equations for the element are

I =1 |)u fi
A 09
which is identical to Equation 2.4. However, the spring element is not in static
equilibrium, so we must examine the nodal forces in detail.
Figure 10.2 shows free-body diagrams of the spring element and mass,
respectively. The free-body diagrams depict snapshots in time when the system
is in motion and, hence, are dynamic free-body diagrams. As the mass of the

spring is considered negligible, Equation 10.9 is valid for the spring element. For
the mass, we have

d2M2
Z F, =ma, =m =mg— fr (10.10)

from which the force on node 2 is

fhr=mg —m——-— (10.11)
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Substituting for f, in Equation 10.9 gives

I =1 Ju | _ fi
k|:—l 1 i| {u;} - {mg —lmﬁz} (10.12)

where ii; = d’u,/dt*. The dynamic effect of the inertia of the attached mass is
shown in the second of the two equations represented by Equation 10.12. Equa-
tion 10.12 can also be expressed as

0 0] 1 —1{Ju | _ | fi
R | 54 R Il | Y B P L
where we have introduced the mass matrix

[m] = [8 2] (10.14)

and the nodal acceleration matrix
(i) = {”,‘.1} (10.15)
up

For the simple harmonic oscillator of Figure 10.1, we have the constraint (bound-
ary) condition u; = 0, so the first of Equation 10.13 becomes simply —ku, = fi,
while the second equation is

miiy + ku, = mg (10.16)

Note that Equation 10.16 is not the same as Equation 10.3. Do the two equations
represent the same physical phenomenon? To show that the answer is yes, we
solve Equation 10.16 and compare the results with the solution given in Equa-
tion 10.6.

Recalling that the solution of any differential equation is the sum of a homo-
geneous (complementary) solution and a particular solution, both solutions must
be obtained for Equation 10.16, since the equation is not homogeneous (i.e., the
right-hand side is nonzero). Setting the right-hand side to zero, the form of the
homogeneous equation is the same as that of Equation 10.3, so by analogy,
the homogeneous solution is

uy(t) = Csin(wt + &) (10.17)

where w, C, and ¢ are as previously defined. The particular solution must satisfy
Equation 10.16 exactly for all values of time. As the right-hand side is constant,
the particular solution must also be constant; hence,

U2y (1) = % =35, (10.18)

which represents the static equilibrium solution per Equation 10.1. The complete
solution is then

ur(t) = uyy(t) + lep(l) = 8 + C sin(wr + ¢) (10.19)
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Equation 10.19 represents a sinusoidal oscillation around the equilibrium posi-
tion and is, therefore, the same as the solution given in Equation 10.6. Given the
displacement of node 2, the reaction force at node 1 is obtained via the constraint
equation as

fi = —kus(t) = —k(dy, + C sin(wt + ) (10.20)

Amplitude C and phase angle ¢ are determined by application of the initial con-
ditions, as illustrated in the following example.
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A simple harmonic oscillator has k = 25 1b/in. and mg = 20 1b. The mass is displaced
downward a distance of 1.5 in. from the equilibrium position. The mass is released from
that position with zero initial velocity at # = (. Determine (a) the natural circular fre-
quency, (b) the amplitude of the oscillatory motion, and (c) the phase angle of the oscil-
latory motion.

H Solution
The natural circular frequency is

3 25
== |2 2198 rad/
TV T 20/386.4 radisee

where, for consistency of units, the mass is obtained from the weight using g = 386.4 in./s>.
The given initial conditions are

ur(t = 0) =9, + 1.5in. i,(t = 0) = Oin./sec

and the static deflection is &; = W/k = 20/25 = 0.8 in. Therefore, we have u,(0) =
2.3 in. The motion of node 2 (hence, the mass) is then given by Equation 10.19 as

ur(t) = 0.8 + Csin(21.98¢ + &) in.
and the velocity is

du2

(1) = a = 21.98C cos(21.98¢ + ) in./sec

Applying the initial conditions results in the equations
u(t =0)=23=0.8+Csind
i,(r) = 0 =21.98C cos ¢
The initial velocity equation is satisfied by C = 0 or ¢ = 7/2. If the former is true, the
initial displacement equation cannot be satisfied, so we conclude that ¢ = /2. Substi-

tuting into the displacement equation then gives the amplitude C as 1.5 in. The complete
motion solution is

Uur(1) = 0.8 4 1.5 sin<21.98t + g) — 0.8+ 1.5¢0s(21.98¢) in.
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indicating that the mass oscillates 1.5 in. above and below the static equilibrium position
continuously in time and completes one cycle every 21 /21.98 sec. Therefore, the cyclic
frequency is

® 21.98

f = — = —— = 3.5cycles/sec (Hz)

2w 2w
The cyclic frequency is often simply referred to as the natural frequency. The time required
to complete one cycle of motion is known as the period of oscillation, given by

1

T=— = = 0.286 sec

1
3.5

Figure 10.3 Simple
harmonic oscillator
subjected to external
force F(t).

10.2.1 Forced Vibration

Figure 10.3 shows a simple harmonic oscillator in which the mass is acted on by
a time-varying external force F(f). The resulting motion is known as forced
vibration, owing to the presence of the external forcing function. As the only dif-
ference in the applicable free-body diagrams is the external force acting on the
mass, the finite element form of the system equations can be written directly
from Equation 10.13 as

0 0 ][ 1 =1 u ] _ f
[0 m]{u‘;}Jrk[—l 1“,4;}—{mg+1F(t)} (10.21)

While the constraint equation for the reaction force at node 1 is unchanged, the
differential equation for the motion of node 2 is now

miiy + ku, = mg + F(t) (10.22)

The complete solution for Equation 10.22 is the sum of the homogeneous solu-
tion and two particular solutions, since two nonzero terms are on the right-hand
side. As we already obtained the homogeneous solution and the particular solu-
tion for the mg term, we focus on the particular solution for the external force.
The particular solution of interest must satisfy

miiy + ku, = F(t) (10.23)
exactly for all values of time. Dividing by the mass, we obtain
F(t
iy + Wy = L0 (10.24)
m

where »? = k/m is the square of the natural circular frequency. Of particular
importance in structural dynamic analysis is the case when external forcing func-
tions exhibit sinusoidal variation in time, since such forces are quite common.
Therefore, we consider the case in which

F(t) = Fysin wrt (10.25)
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where Fj is the amplitude or maximum value of the force and o is the circular
frequency of the forcing function, or forcing frequency for short. Equation 10.24
becomes

. 2 FO .
liy + 0 uy = — sin wst (10.26)
m

To satisfy Equation 10.24 exactly for all values of time, the terms on the left must
contain a sine function identical to the sine term on the right-hand side. Since the
second derivative of the sine function is another sine function, we assume a
solution in the form u,(¢) = Usin wt, where U is a constant to be determined.
Differentiating twice and substituting, Equation 10.26 becomes

F
~Uo}sinost + Uo®sinwst = — sin oyt (10.27)
m
from which
F
= —om (10.28)
=y

The particular solution representing response of the simple harmonic oscillator
to a sinusoidally varying force is then

Fo/m
ur(1) = ——— 5 sinwyt (10.29)
W — r

The motion represented by Equation 10.29 is most often simply called the forced
response and exhibits two important characteristics: (1) the frequency of the
forced response is the same as the frequency of the forcing function, and (2) if
the circular frequency of the forcing function is very near the natural circular
frequency of the system, the denominator in Equation 10.29 becomes very small.
The latter is an extremely important observation, as the result is large amplitude
of motion. In the case wy = w, Equation 10.29 indicates an infinite amplitude.
This condition is known as resonance, and for this reason, the natural circular
frequency of the system is often called the resonant frequency. Mathematically,
Equation 10.29 is not a valid solution for the resonant condition (Problem 10.5);
however, the correct solution for the resonant condition nevertheless exhibits
unbounded amplitude growth with time.

The simple harmonic oscillator just modeled contains no device for energy
dissipation (damping). Consequently, the free vibration solution, Equation 10.20,
represents motion that continues without end. Physically, such motion is not pos-
sible, since all systems contain some type of dissipation mechanism, such as
internal or external friction, air resistance, or devices specifically designed for the
purpose. Similarly, the infinite amplitude indicated for the resonant condition
cannot be attained by a real system because of the presence of damping. However,
relatively large, yet bounded, amplitudes occur at or near the resonant frequency.
Hence, the resonant condition is to be avoided if at all possible. As is subsequently
shown, physical systems actually exhibit multiple natural frequencies, so multi-
ple resonant conditions exist.
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Figure 10.4 A
spring-mass system
exhibiting 2 degrees
of freedom.
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10.3 MULTIPLE DEGREES-OF-FREEDOM
SYSTEMS

Figure 10.4 shows a system of two spring elements having concentrated masses
attached at nodes 2 and 3 in the global coordinate system. As in previous exam-
ples, the system is subjected to gravity and the upper spring is attached to a rigid
support at node 1. Of interest here is the dynamic response of the system of two
springs and two masses when the equilibrium condition is disturbed by some
external influence and then free to oscillate without external force. We could take
the Newtonian mechanics approach by drawing the appropriate free-body dia-
grams and applying Newton’s second law of motion to obtain the governing
equations. Instead, we take the finite element approach. By now, the procedure of
assembling the system stiffness matrix should be routine. Following the proce-
dure, we obtain

3k -3k O
[K]=| -3k 5k —2k (10.30)
0 -2k 2k

as the system stiffness matrix. But what of the mass/inertia matrix? As the masses
are concentrated at element nodes, we define the system mass matrix as

0 0 O
M]=|{0 m O (10.31)
0 0 m
The equations of motion can be expressed as
l?l U, Ry
[M]y U, ¢ +[K]{ U ¢ = | mg (10.32)
Us Us mg

where R is the dynamic reaction force at node 1.
Invoking the constraint condition U; = 0, Equation 10.32 become

m 07U 5k =2k | U [ mg
Y B v B i B
which is a system of two second-order, linear, ordinary differential equations in
the two unknown system displacements U, and Us. As the gravitational forces

indicated by the forcing function represent the static equilibrium condition, these
are neglected and the system of equations rewritten as

KO | A A R A AT

As a practical matter, most finite element software packages do not include
the structural weight in an analysis problem. Instead, inclusion of the structural
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weight is an option that must be selected by the user of the software. Whether to
include gravitational effects is a judgment made by the analyst based on the
specifics of a given structural geometry and loading.

The system of second-order, linear, ordinary, homogeneous differential
equations given by Equation 10.34 represents the free-vibration response of the
2 degrees-of-freedom system of Figure 10.4. As a freely oscillating system, we
seek solutions in the form of harmonic motion as

Us(t) = Ay sin(wt + ¢)

Us(t) = Ajsin(of + ¢) (10.35)

where A; and Aj are the vibration amplitudes of nodes 2 and 3 (the masses at-
tached to nodes 2 and 3); w is an unknown, assumed harmonic circular frequency
of motion; and ¢ is the phase angle of such motion. Taking the second derivatives
with respect to time of the assumed solutions and substituting into Equation 10.34
results in

_“’2|:’Z)l 2}{ij}sin(wt+¢)+ [_Sgk Eik}{ij}sin(wt—i-d)): {8}
(10.36)

or

_ 2 _
[Sk IR _2,7’;0)2“ " } sin(or + ) = { ‘ } (1037)

Equation 10.37 is a system of two, homogeneous algebraic equations, which
must be solved for the vibration amplitudes A, and A3. From linear algebra, a
system of homogeneous algebraic equations has nontrivial solutions if and only
if the determinant of the coefficient matrix is zero. Therefore, for nontrivial
solutions,

|5k — mw? —2k |

—2k 2% — me?| = (10.38)

which gives

(5k — mw?)(2k — mo?) —4k*> =0 (10.39)
Equation 10.39 is known as the characteristic equation or frequency equation of
the physical system. As k and m are known positive constants, Equation 10.39 is

treated as a quadratic equation in the unknown w? and solved by the quadratic
formula to obtain two roots

2 _
W] =

3| =

(10.40)

w5 =

2
2

(@)
S| =
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or

(10.41)

| k
W] = —
m
k
6—
m

Wy =

In mathematical rigor, there are four roots, since the negative values correspond-
ing to Equation 10.41 also satisfy the frequency equation. The negative values
are rejected because a negative frequency has no physical meaning and use of the
negative values in the assumed solution (Equation 10.35) introduces only a phase
shift and represents the same motion as that corresponding to the positive root.

The 2 degrees-of-freedom system of Figure 10.4 is found to have two natural
circular frequencies of oscillation. As is customary, the numerically smaller of
the two is designated as w; and known as the fundamental frequency. The task
remains to determine the amplitudes A; and A3 in the assumed solution. For this
purpose, Equation 10.37 is

5k —mw? =2k A, 0

R | ) B Y B
As Equation 10.42 is a set of homogeneous equations, we can find no absolute
values of the amplitudes. We can, however, obtain information regarding the
numerical relations among the amplitudes as follows. If we substitute »? = w? =
k/m into either algebraic equation, we obtain A3 = 2A,, which defines the
amplitude ratio A3/ A, = 2 for the first, or fundamental, mode of vibration. That
is, if the system oscillates at its fundamental frequency w;, the amplitude of
oscillation of m, is twice that of m;. (Note that we are unable to calculate the
absolute value of either amplitude; only the ratio can be determined. The absolute
values depend on the initial conditions of motion, as is subsequently illustrated.)
The displacement equations for the fundamental mode are then

Uy(t) = AYsin(wit + dby)
Us(1) = AYsin(o; + dby) = 24 sin(w11 + dy)

where the superscript on the amplitudes is used to indicate that the displacements
correspond to vibration at the fundamental frequency.

Next we substitute the second natural circular frequency w? = w3 = 6k/m
into either equation and obtain the relation A; = —0.5A,, which defines the sec-
ond amplitude ratio as A3/ A, = —0.5. So, in the second natural mode of vibra-
tion, the masses move in opposite directions. The displacements corresponding
to the second frequency are then

Uy(t) = AYsin(wat + do)
Us(t) = A% sin(w; + d) = —0.5A% sin(war + d)

where again the superscript refers to the frequency.

(10.43)

(10.44)
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Therefore, the free-vibration response of the 2 degree-of-freedom system is
given by

Us(t) = AYsin(wit + dby) + AT sin(war + &)

o N (10.45)
Us(t) = 2A" ) sin(owt + &) — 0.5A% sin(wy + )

and we note the four unknown constants in the solution; specifically, these are the
amplitudes A(é), A(? and the phase angles ¢; and ¢,. Evaluation of the constants
is illustrated in a subsequent example.

Depending on the reader’s mathematical background, the analysis of the
2 degree-of-freedom vibration problem may be recognized as an eigenvalue
problem [1]. The computed natural circular frequencies are the eigenvalues of
the problem and the amplitude ratios represent the eigenvectors of the problem.
Equation 10.45 represents the response of the system in terms of the natural
modes of vibration. Such a solution is often referred to as being obtained by
modal superposition or simply modal analysis. To represent the complete solu-
tion for the system, we use the matrix notation

(1) o)
Us)| ] A A% )

which shows that the modes interact to produce the overall motion of the system.
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Given the system of Figure 10.4 with k = 40 Ib/in. and mg = W = 20 1b, determine

(a) The natural frequencies of the system.
(b) The free response, if the initial conditions are

U>(t = 0) = 1in. Us(t = 0) = 0.51n. Uyt =0)=Us(t =0)=0

These initial conditions are specified in reference to the equilibrium position of the
system, so the computed displacement functions do not include the effect of gravity.

H Solution
Per Equation 10.41, the natural circular frequencies are

40(386 4)
= 27.8rad/sec
20/g 20

/ 6k / 6(40) 6(40)(386 4)
20/g 20

= 68.1rad/sec

The free-vibration response is given by Equation 10.35 as

Us(t) = AVsin(27.87 + &) + AT sin(68.11 + &)
Us(1) = 2A")sin(27.8 + ;) — 0.547sin(68.1¢ + )
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The amplitudes and phase angles are determined by applying the initial conditions, which
are

Uy(0) =1 = AYsin b + A% sin ,
Us(0) = 0.5 = 24 sin &, — 0.5A% sin ¢,
U,(0) = 0 = 27.84)cos & + 68.147 cos &,
U3(0) = 0 = 2(27.8) A} cos d, — 0.5(68.1) A7 cos b,
The initial conditions produce a system of four algebraic equations in the four un-
knowns A(;), A(i), 1, &,. Solution of the equations is not trivial, owing to the presence

of the trigonometric functions. Letting P = A(;) sind; and Q = A(? sin &, the displace-
ment initial condition equations become

P+0=1
2P —0.50 = 0.5

which are readily solved to obtain
_ A _ A _
P=Asin¢; =04 and Q= A3sind, =0.6
Similarly, setting R = Ag)cos $yand S = A%)sin &,, the initial velocity equations are

27.8R+68.1S =0
2(27.8)R — 0.5(68.1)S =0

representing a homogeneous system in the variables R and S. Nontrivial solutions exist
only if the determinant of the coefficient matrix is zero. In this case, the determinant is not
zero, as may easily be verified by direct computation. There are no nontrivial solutions;
hence, R = S = 0. Based on physical argument, the amplitudes cannot be zero, so we
must conclude that cos &; = cos b, = 0 = &, = b, = w/2. It follows that the sine func-
tion of the phase angles have unity value; hence, A(;) = 0.4 and A(? = 0.6. Substituting
the amplitudes into the general solution form while noting that sin(wz + 7/2) = cos wt,
the free-vibration response of each mass is

U,(t) = 0.4 cos 27.8t + 0.6 cos 68.1¢

Us(t) = 0.8 cos 27.8t — 0.3 cos 68.1¢
The displacement response of each mass is seen to be a combination of motions corre-
sponding to the natural circular frequencies of the system. Such a phenomenon is charac-

teristic of vibrating structural systems. All the natural modes of vibration participate in
the general motion of a structure.

10.3.1 Many-Degrees-of-Freedom Systems

As illustrated by the system of two springs and masses, there are two natural
frequencies and two natural modes of vibration. If we extend the analysis to
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a system of springs and masses having N degrees of freedom, as depicted in
Figure 10.5, and apply the assembly procedure for a finite element analysis, the
finite element equations are of the form

MU} + [K1{U} = {0} (10.47)

where [M] is the system mass matrix and [K ] is the system stiffness matrix. To
determine the natural frequencies and mode shapes of the system’s vibration
modes, we assume, as in the 1 and 2 degrees-of-freedom cases, that

U;(t) = A; sin(ot + ¢) (10.48)

Substitution of the assumed solution into the system equations leads to the fre-
quency equation

(K] — o’ [M]| =0 (10.49)

which is a polynomial of order N in the variable 2. The solution of Equation 10.49
results in N natural frequencies w;, which, for structural systems, can be shown to
be real but not necessarily distinct; that is, repeated roots can occur. As discussed
many times, the finite element equations cannot be solved unless boundary condi-
tions are applied so that the equations become inhomogeneous. A similar phe-
nomenon exists when determining the system natural frequencies and mode
shapes. If the system is not constrained, rigid body motion is possible and one or
more of the computed natural frequencies has a value of zero. A three-dimensional
system has six zero-valued natural frequencies, corresponding to rigid body trans-
lation in the three coordinate axes and rigid body rotations about the three coor-
dinate axes. Therefore, if improperly constrained, a structural system exhibits
repeated zero roots of the frequency equation.

Assuming that constraints are properly applied, the frequencies resulting
from the solution of Equation 10.49 are substituted, one at a time, into Equa-
tion 10.47 and the amplitude ratios (eigenvectors) computed for each natural
mode of vibration. The general solution for each degree of freedom is then
expressed as

N
Uiy = Y AVsin(ojr + )  i=1N (10.50)
j=1

illustrating that the displacement of each mass is the sum of contributions from
each of the N natural modes. Displacement solutions expressed by Equa-
tion 10.50 are said to be obtained by modal superposition. We add the indepen-
dent solutions of the linear differential equations of motion.

Determine the natural frequencies and modal amplitude vectors for the 3 degrees-of-
freedom system depicted in Figure 10.6a.
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Figure 10.6 System with
3 degrees of freedom for
@ (b) Example 10.3.
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S

H Solution
The finite element model is shown in Figure 10.6b, with node and element numbers as
indicated. Assembly of the global stiffness matrix results in

kK —k 0 0
—k 3k =2k O
0 -2k 3k —k
0 0 -k Kk

[K]=
Similarly, the assembled global mass matrix is

0 0
0 0
M| =
[(M] 0 0
0

o 3 oo

0
m
0
0 2m

Owing to the constraint U; = 0, we need consider only the last three equations of motion,
given by

m 0 07[0 3k 2 07(U, 0
0O m O U3 + | =2k 3k —k U; ;=10
0 0 2m 04 0 —k k U, 0
Assuming sinusoidal response as U; = A; sin(wt + ¢), i = 2,4 and substituting into the

equations of motion leads to the frequency equation
3k — o’m —2k 0
—2k 3k — w’m —k =0
0 —k k —2w’m
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Expanding the determinant and simplifying gives

k )\’ k\°®
w6—6.5—w4+7.5<—) w2—<—> =0
m m m

which will be treated as a cubic equation in the unknown w?. Setting w?> = C(k/m), the
frequency equation becomes

k 3
(C*=6.5C*+7.5C — 1)(—) =0
m

which has the roots
C, =0.1532 C, = 1.2912 C; = 5.0556

The corresponding natural circular frequencies are

k
o =0.3914,/ =
m
k
Wy = 1.1363,/ —
m
k
w3 =2.2485, [ —
m

To obtain the amplitude ratios, we substitute the natural circular frequencies into the
amplitude equations one at a time while setting (arbitrarily) A(’; =1,i=1,2,3andsolve
for the amplitudes A", and A"}, Using o, results in

(3k — w’m)AY —2kA) =0
—2kAY + (3k — w?m) A — kA =0
—kAY + (k — 20im)A") =0
Substituting w; = 0.3914./k/m, we obtain
2.8474% — 240 =0
—2A") 4284747 — A =0
—AY +0.694A) =0

As discussed, the amplitude equations are homogeneous; explicit solutions cannot be
obtained. We can, however, determine the amplitude ratios by setting A(;) = 1 to obtain
A = 1.4235
A'Y =2.0511
The amplitude vector corresponding to the fundamental mode w, is then represented as

1
[AV} = A0 1.4325
2.0511
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and this is the eigenvector corresponding to the eigenvalue w,. Proceeding identically
with the values for the other two frequencies, w, and w;, the resulting amplitude vectors
are

[A®} = AT 1 0.8544
—0.5399

(A9} = A9 { —1.0279
0.1128

This example illustrates that an N degree-of-freedom system exhibits N natural
modes of vibration defined by N natural circular frequencies and the correspond-
ing N amplitude vectors (mode shapes). While the examples deal with discrete
spring-mass systems, where the motions of the masses are easily visualized as
recognizable events, structural systems modeled via finite elements exhibit N
natural frequencies and N mode shapes, where N is the number of degrees of
freedom (displacements in structural systems) represented by the finite element
model. Accuracy of the computed frequencies as well as use of the natural modes
of vibration to examine response to external forces is delineated in following
sections.

10.4 BAR ELEMENTS: CONSISTENT
MASS MATRIX

In the preceding discussions of spring-mass systems, the mass (inertia) matrix
in each case is a lumped (diagonal) matrix, since each mass is directly attached
to an element node. In these simple cases, we neglect the mass of the spring
elements in comparison to the concentrated masses. In the general case of solid
structures, the mass is distributed geometrically throughout the structure and the
inertia properties of the structure depend directly on the mass distribution. To
illustrate the effects of distributed mass, we first consider longitudinal (axial)
vibration of the bar element of Chapter 2.

The bar element shown in Figure 10.7a is the same as the bar element intro-
duced in Chapter 2 with the very important difference that displacements and ap-
plied forces are now assumed to be time dependent, as indicated. The free-body
diagram of a differential element of length dx is shown in Figure 10.7b, where
cross-sectional area A is assumed constant. Applying Newton’s second law to the
differential element gives

<+aod)A A—(Ad)azu (10.51)
o+ —dx oA =(pAdy)_s .
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1 |—> u(x, 1) 2 o

(e o ) — M >

JF
I—» uy(xy, 1) I—» uy(xy, 1) * | dx |

() (d)

Figure 10.7

© The McGraw-Hill
Companies, 2004

Jdo
o+ Ox dx

(a) Bar element exhibiting time-dependent displacement. (b) Free-body diagram of a

differential element.

where p is density of the bar material. Note the use of partial derivative operators,
since displacement is now considered to depend on both position and time. Sub-
stituting the stress-strain relationo = E¢ = E(du/dx), Equation 10.51 becomes

Cu_ (10.52)
ax2 ~ Par '
Equation 10.52 is the one-dimensional wave equation, the governing equation
for propagation of elastic displacement waves in the axial bar.

In the dynamic case, the axial displacement is discretized as

u(x, t) = Ni(x)ui(t) + Nao(x)ua(t) (10.53)
where the nodal displacements are now expressed explicitly as time dependent,
but the interpolation functions remain dependent only on the spatial variable.
Consequently, the interpolation functions are identical to those used previously
for equilibrium situations involving the bar element: Ni(x) =1 — (x/L) and
Ny(x) = x/L. Application of Galerkin’s method to Equation 10.52 in analogy to
Equation 5.29 yields the residual equations as

L
9%u 9%u .
0

Assuming constant material properties, Equation 10.54 can be written as
L L
A/N()azud AE/N()azud =12 (10.55)
(X)) — dx = (X)) — dx i =1, .
P 012 ox2
0 0

Mathematical treatment of the right-hand side of Equation 10.55 is identical to
that presented in Chapter 5 and is not repeated here, other than to recall that the
result of the integration and combination of the two residual equations in matrix
form is

AE[ 1 =1 ||u | _ | A B
T[—l 1]{u;}—{f;}=>[k]{u}_{f} (10.56)
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Substituting the discretized approximation for u(x, t), the integral on the left
becomes

L L
32
pA/N,»(x)a—tZ dx = pA/N[(leil—i-Nziiz)dx i=1,2 (10.57)
0 0

where the double-dot notation indicates differentiation with respect to time. The
two equations represented by Equation 10.57 are written in matrix form as

L
Nf NN, iy | epAL[2 17[iiy | _ )
pA/|:NlNz N3 ]dx{ﬁz}_ 6 [1 ZjHiiz = [ml{u}  (10.58)

0

and the reader is urged to confirm the result by performing the indicated integra-
tions. Also note that the mass matrix is symmetric but not singular. Equa-
tion 10.58 defines the consistent mass matrix for the bar element. The term con-
sistent is used because the interpolation functions used in formulating the mass
matrix are the same as (consistent with) those used to describe the spatial varia-
tion of displacement. Combining Equations 10.56 and 10.58 per Equation 10.55,
we obtain the dynamic finite element equations for a bar element as

pALT2 1|]ii AET 1 —1||w | _ |7
p K11 VA R I | P O VA RS

[m i}y + [k1{u} = {f} (10.60)

and we note that p AL = m is the total mass of the element. (Why is the sign of
the second term positive?)

Given the governing equations, let us now determine the natural frequen-
cies of a bar element in axial vibration. Per the foregoing discussion of free
vibration, we set the nodal force vector to zero and write the frequency equa-
tion as

or

k] — *[m]| = 0 (10.61)

to obtain

=0 (10.62)

Expanding Equation 10.62 results in a quadratic equation in »?

m\’ m\’_
k—w3 - k+w6 =0 (10.63)
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or

2f 2 k
® (u) — 12—> =0 (10.64)
m

Equation 10.64 has roots »? = 0 and w? = 12k/m. The zero root arises because
we specify no constraint on the element; hence, rigid body motion is possible
and represented by the zero-valued natural circular frequency. The nonzero nat-
ural circular frequency corresponds to axial displacement waves in the bar,
which could occur, for example, if the free bar were subjected to an axial impulse
at one end. In such a case, rigid body motion would occur but axial vibra-
tion would simultaneously occur with circular frequency w; = /12k/m =
(3.46/L)/E/p . The following example illustrates determination of natural cir-
cular frequencies for a constrained bar.

© The McGraw-Hill
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EXAMPLE 10.4

Using two equal-length finite elements, determine the natural circular frequencies of the
solid circular shaft fixed at one end shown in Figure 10.8a.

H Solution
The elements and node numbers are shown in Figure 10.8b. The characteristic stiffness of
each element is

AE 2AE

so that the element stiffness matrices are

k=er= 2251

The mass of each element is

and the element consistent mass matrices are

[m"] = [m®] = %Lﬁ ;]

h
™~
~
S
3]
™~
~
¥
) ¢

(a) (b)

Figure 10.8
(a) Circular shaft of Example 10.4. (b) Model using two bar elements.
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Following the direct assembly procedure, the global stiffness matrix is

e b0
[Kl==—~|-1 2 -1
0o -1 1
and the global consistent mass matrix is
DAL 2 10
01 2
The global equations of motion are then
DAL 21 07(0 g1 -1 0w 0
— |1 4 1 [{hi+t—F| -1 2 -1|JU,r=10
12 . L
0 1 2], 0 -1 1 Us 0

Applying the constraint condition U; = 0, we have

S VA = e | PR R

as the homogeneous equations governing free vibration. For convenience, the last equa-
tion is rewritten as

4 1 {Uz}+24E 2 -1 {Uz}_{O}
1 2] U pL2L -1 1 Jlus) ™ o
Assuming sinusoidal responses

Uz = Az sin(wl + (l)) U3 = A3 Sil’l((.l)t + CI))

differentiating twice and substituting results in

4 1 A . 24E1 2 —1 A . 0
_wz[l 2]{Aj}sm(u)t+¢)+m|:_l 1}{A§}sm(wt+d>)={o}

Again, we obtain a set of homogeneous algebraic equations that have nontrivial solutions
only if the determinant of the coefficient matrix is zero. Letting A\ = 24E/p L?, the
frequency equation is given by the determinant

|2N —40? -\ — 0?|
| A — 0> A-20°

which, when expanded and simplified, is
7o' — 10M0” +\* =0
Treating the frequency equation as a quadratic in ?, the roots are obtained as
ol =0.1082N 3 = 1.3204\
Substituting for \, the natural circular frequencies are

1611 [E 5629 [E
0w =—_/— wy, = — [ — rad/sec
L P L P
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For comparison purposes, we note that the exact solution [2] for the natural circular
frequencies of a bar in axial vibration yields the fundamental natural circular frequency
as 1.571/L/E/p and the second frequency as 4.712/L/E/p . Therefore, the error for the
first computed frequency is about 2.5 percent, while the error in the second frequency is
about 19 percent.

It is also informative to note (see Problem 10.12) that, if the lumped mass matrix
approach is used for this example, we obtain

1.531 |E 3.606 |E
0w =—_|— w, = —— | — rad/sec
L p L p

© The McGraw-Hill
Companies, 2004

407

The solution for Example 10.4 yielded two natural circular frequencies for
free axial vibration of a bar fixed at one end. Such a bar has an infinite number of
natural frequencies, like any element or structure having continuously distributed
mass. In finite element modeling, the partial differential equations governing
motion of continuous systems are discretized into a finite number of algebraic
equations for approximate solutions. Hence, the number of frequencies obtain-
able via a finite element approach is limited by the discretization inherent to the
finite element model.

The inertia characteristics of a bar element can also be represented by a
lumped mass matrix, similar to the approach used in the spring-mass examples
earlier in this chapter. In the lumped matrix approach, half the total mass of the
element is assumed to be concentrated at each node and the connecting material
is treated as a massless spring with axial stiffness. The lumped mass matrix for a

bar element is then
_pPAL[1 0
[m] = - [0 l} (10.65)

Use of lumped mass matrices offers computational advantages. Since the ele-
ment mass matrix is diagonal, assembled global mass matrices also are diagonal.
On the other hand, although more computationally difficult in use, consistent
mass matrices can be proven to provide upper bounds for the natural circular fre-
quencies [3]. No such proof exists for lumped matrices. Nevertheless, lumped
mass matrices are often used, particularly with bar and beam elements, to obtain
reasonably accurate predictions of dynamic response.

10.5 BEAM ELEMENTS

We now develop the mass matrix for a beam element in flexural vibration. First,
the consistent mass matrix is obtained using an approach analogous to that for the
bar element in the previous section. Figure 10.9 depicts a differential element of
a beam in flexure under the assumption that the applied loads are time dependent.
As the situation is otherwise the same as that of Figure 5.3 except for the use of
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y l M <
X

Figure 10.9 Differential element of a beam

subjected to time-dependent loading.

q(x, 1)

'ty o

>M+de

v dx v
ax

partial derivatives, we apply Newton’s second law of motion to the differential
element in the y direction to obtain

v 9%y
Y Fy=may, =V + TV - nde=(pAd)os  (1066)
X

where p is the material density and A is the cross-sectional area of the element.
The quantity p A represents mass per unit length in the x direction. Equation 10.66
simplifies to

v (x. 1) A 3y

L gx.t) =pA—o

ox 1 TE
As we are dealing with the small deflection theory of beam flexure, beam slopes,
therefore rotations, are small. Therefore, we neglect the rotational inertia of the
differential beam element and apply the moment equilibrium equation. The result
is identical to that of Equation 5.37, repeated here as

(10.67)

oM
—=—_V (10.68)
0x
Substituting the moment-shear relation into Equation 10.67 gives
82 2
- — ) =pA— 10.69
o2 A =pAg (10.69)
Finally, the flexure formula
3%y
M=EIl—; (10.70)
0x2

is substituted into Equation 10.69 to obtain the governing equation for dynamic
beam deflection as

” (EI 82V> )= pAl (10.71)

-—— — | —qx, 1) =pA— .
a2 \"ax2) 1 TE

Under the assumptions of constant elastic modulus £ and moment of inertia I,

the governing equation becomes

2 4

v Y
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As in the case of the bar element, transverse beam deflection is discretized
using the same interpolation functions previously developed for the beam func-
tion. Now, however, the nodal displacements are assumed to be time dependent.
Hence,

v(x, 1) = Ni(x)vi(1) + No(x)01(1) + N3(x)va(t) + Na(x)02(r)  (10.73)

and the interpolation functions are as given in Equation 4.26 or 4.29. Application
of Galerkin’s method to Equation 10.72 for a finite element of length L results in
the residual equations

L
AL oy = 1,4 10.74
fN,(x)(p W+Elzﬁ+q>_0 i=1, (10.74)
0

As the last two terms of the integrand are the same as treated in Equation 5.42,
development of the stiffness matrix and nodal force vector are not repeated here.
Instead, we focus on the first term of the integrand, which represents the terms of
the mass matrix.

For each of the four equations represented by Equation 10.74, the first integral
term becomes

L L V]
. . 0
pA / Ni(Ni¥1 + Nobiy + Naiip 4+ Nyby) dx = pA / N;i[N]dx vl i=1,4
2
0 0 6'2

(10.75)

and, when all four equations are expressed in matrix form, the inertia terms
become

. o i
) 6,
T _ (e)
pA/[N] [N]dx ) = [m“] ) (10.76)
’ 6 6

The consistent mass matrix for a two-dimensional beam element is given by
L
[m“] = pA/ [NT'[N]dx (10.77)
0

Substitution for the interpolation functions and performing the required integra-
tions gives the mass matrix as

156  22L 54  —I3L

[m@]:ﬂ 22L 4L* 13L  —3L?
420 | 54  13L 156 —22L
—13L —-3L> —-22L 4L

(10.78)

and it is to be noted that we have assumed constant cross-sectional area in this
development.

© The McGraw-Hill
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Combining the mass matrix with previously obtained results for the stiffness
matrix and force vector, the finite element equations of motion for a beam ele-
ment are

by Vi L —Vi(n)
e 6 e 0 -M (t)
(e) 1 (e) Ly _ T 1
[m'] 5 + [£“] b= f[N] g ndet (10.79)
6 6 ’ My(1)

and all quantities are as previously defined. In the dynamic case, the nodal shear
forces and bending moments may be time dependent, as indicated.

Assembly procedures for the beam element including the mass matrix are
identical to those for the static equilibrium case. The global mass matrix is directly
assembled, using the individual element mass matrices in conjunction with the
element-to-global displacement relations. While system assembly is procedurally
straightforward, the process is tedious when carried out by hand. Consequently, a
complex example is not attempted. Instead, a relatively simple example of natural
frequency determination is examined.

Using a single finite element, determine the natural circular frequencies of vibration of a
cantilevered beam of length L, assuming constant values of p, E, and A.

H Solution

The beam is depicted in Figure 10.10, with node 1 at the fixed support such that the bound-
ary (constraint) conditions are v; = 6; = 0. For free vibration, applied force and bending
moment at the free end (node 2) are V, = M, = 0 and there is no applied distributed load.
Under these conditions, the first two equations represented by Equation 10.79 are con-
straint equations and not of interest. Using the constraint conditions and the known applied
forces, the last two equations are

pAL|: 156 —22L]{92}+ﬂ[ 12 —6L]{v2}_{0}
420 | —22L  4L? 6, L3 —6L 4L* |6 ] o
For computational convenience, the equations are rewritten as

[156 —22L]{v2}+4zoElz[ 12 —6LHv2}_{o}
—22L 4L || 6, mL3 | —6L 4L* || 6, ) |0

1 ‘ 2 —

| L |

Figure 10.10 The cantilevered beam of
Example 10.5 modeled as one element.
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with m = p AL representing the total mass of the beam. Assuming a sinusoidal displace-
ment response, the frequency equation becomes

| 12N — 156w>  —6\L + 220°L |

=0
| —6AL +220°L  4L*(\ — %) |

with N = 420 E1,/mL>. After expanding the determinant and performing considerable
algebraic manipulation, the frequency equation becomes

S0 — 102 0” + 3\ =0
Solving as a quadratic in w?, the roots are
o] =0.02945\ o} =20.37\

Substituting for N in terms of the beam physical parameters, we obtain

EI. EI.
o =3.517,/ —= 0y = 92.50,/ ~ rad/sec
mL3 mL3

as the finite element approximations to the first two natural circular frequencies. For com-
parison, the exact solution gives

exact EIZ exact EIZ
o™ =3.516 L Wy =22.03 e rad/sec

The fundamental frequency computed via a single element is essentially the same as the
exact solution, whereas the second computed frequency is considerably larger than the cor-
responding exact value. As noted previously, a continuous system exhibits an infinite
number of natural modes; we obtained only two modes in this example. If the number of
elements is increased, the number of frequencies (natural modes) that can be computed
increases as the number of degrees of freedom increases. In concert, the accuracy of the
computed frequencies improves.

If the current example is refined by using two elements having length L/2 and the
solution procedure repeated, we can compute four natural frequencies, the lowest two

given by
—3516\/ Bl =24 5\/ El
@ mlL3 w2 = mL3

and we observe that the second natural circular frequency has improved (in terms of the
exact solution) significantly. The third and fourth frequencies from this solution are found
to be quite high in relation to the known exact values.

© The McGraw-Hill
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As indicated by the foregoing example, the number of natural frequencies
and mode shapes that can be computed depend directly on the number of degrees
of freedom of the finite element model. Also, as would be expected for conver-
gence, as the number of degrees of freedom increases, the computed frequencies
become closer to the exact values. As a general rule, the lower values (numeri-
cally) converge more rapidly to exact solution values. While this is discussed
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in more detail in conjunction with specific examples to follow, a general rule of
thumb for frequency analysis is as follows: If the finite element analyst is inter-
ested in the first P modes of vibration of a structure, at least 2P modes should
be calculated. Note that this implies the capability of calculating a subset of
frequencies rather than all frequencies of a model. Indeed, this is possible and
extremely important, since a practical finite element model may have thousands
of degrees of freedom, hence thousands of natural frequencies. The computa-
tional burden of calculating all the frequencies is overwhelming and unnecessary,
as is discussed further in the following section.

10.6 MASS MATRIX FOR A GENERAL ELEMENT:
EQUATIONS OF MOTION

The previous examples dealt with relatively simple systems composed of linear
springs and the bar and beam elements. In these cases, direct application of
Newton’s second law and Galerkin’s finite element method led directly to the for-
mulation of the matrix equations of motion; hence, the element mass matrices. For
more general structural elements, an energy-based approach is preferred, as for
static analyses. The approach to be taken here is based on Lagrangian mechanics
and uses an energy method based loosely on Lagrange’s equations of motion [4].
Prior to examining a general case, we consider the simple harmonic oscilla-
tor of Figure 10.1. At an arbitrary position x with the system assumed to be in
motion, kinetic energy of the mass is
(10.80)

T = —mx
and the total potential energy is
U, = %k(é‘)s, +x)* — mg(dy + x) (10.81)
therefore, the total mechanical energy is
En=T+U, = %mxz + %k(&, +x)° —mgd; +x)  (10.82)

As the simple harmonic oscillator model contains no mechanism for energy
removal, the principle of conservation of mechanical energy applies; hence,

dE,,
e =0=mxx 4+ k(&; + x)x —mgx (10.83)
or
mx + k(d;, + x) = mg (10.84)

and the result is exactly the same as obtained via Newton’s second law in Equa-
tion 10.2.
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Figure 10.11 Differential element of a general
three-dimensional body.

For the general case, we consider the three-dimensional body depicted in
Figure 10.11 and examine a differential mass dm = p dx dy dz located at arbi-
trary position (x, y, z). Displacement of the differential mass in the coordinate
directions are (u, v, w) and the velocity components are (i, v, w), respectively.
As we previously examined the potential energy, we now focus on kinetic energy
of the differential mass given by

1 ) ) .2 1 .2 .2 )
dT:E(u + v +w)dm:5(u + v+ w)pdxdydz (10.85)
Total kinetic energy of the body is then

1 1
TZE// (1,'{2—|—1)2+W2)dm=§// >+ v+ whpdxdydz  (10.86)

and the integration is performed over the entire mass (volume) of the body.
Considering the body to be a finite element with the displacement field
discretized as

M
u(x,y, 2, 1) = ) Nix, y, Dui(t) = [N1{u)

i=1

M
v,y 2. 1) = ) Ni(x, y, 2)vi(t) = [N]{v} (10.87)

i=l

M
w(x,y, z.0) = Y Ni(x, y, Dwi(t) = [N1{w}
i=1
(where M is the number of element nodes), the velocity components can be
expressed as

. Ou .
w=-—=[N]{u}

ot
v .
b= = NI (10.88)
W N
a7 = [N1{w}
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The element kinetic energy expressed in terms of nodal velocities and interpola-
tion functions is then written as

1
T — 5// {a} INTIN Wi} + () INT N

v
+ () INTT [N ]pehp aV (10.89)
Denoting the nodal velocities as
()
{8} =1 v} (10.90)
b}
a3M x 1 column matrix, the kinetic energy is expressed as
1. [NT"[N] 0 0 )
ro=so [[[{ 0 w0 feavew
Ve 0 0 [N1"[N]
1 . .
= E{S}T[m“)]{B} (10.91)

and the element mass matrix is thus identified as

[N]T[N] 0 0
[m] =/// 0 [N]T[N] 0 pdV®@  (10.92)
%40 0 0 [N]T[N]

Note that, in Equation 10.92, the zero terms actually represent M x M null
matrices. Therefore, the mass matrix as derived is a 3M x 3M matrix, which is
also readily shown to be symmetric. Also note that the mass matrix of Equa-
tion 10.92 is a consistent mass matrix. The following example illustrates the
computations for a two-dimensional element.

Formulate the mass matrix for the two-dimensional rectangular element depicted in Fig-
ure 10.12. The element has uniform thickness 5 mm and density p = 7.83 x 10~° kg/mm°.

4 3
(10, 30) s ‘ (40, 30)

r

1 2
)’1 (10, 10) (40, 10)

X

Figure 10.12 The rectangular element
of Example 10.6.
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H Solution

Per Equation 6.56, the interpolation functions in terms of serendipity or natural coordi-
nates are

Ni(r,s) = 41_1(1 —r)(l—y)
1

Ny(r,s) = Z(l +r) (1l —ys)
1

Nx(r,s) = Z(l +r)(1+s)

1
Ny(r,s) = Z(l —r)(1+s)

with r = (x — 25)/15 and s = (y — 20)/10. For integration in the natural coordinates,
dx = 15 dr and dy = 10 ds. The mass matrix is 8§ x 8 and the nonzero terms are defined by

11
//f [NT"[N]p dV® = pt//[N]T[N](IS dr)(10 ds)
y(e -1 -1
1 1
= 150(5)p//[N]T[N]drds
-1 -1

In this solution, we compute a few terms for illustration, then present the overall results.
For example,

1

1 1 1
lSO(S)p//le drds = 15?6(5);)//(1 — X1 —s)*drds

mp =
—1 =1 -1 -1
15005 [ —r)(1 —5)3:|1 750 (64) ~ 4(750) i
16 p[ 3 3 e AN AR
=2.6(10) kg
Similarly,
1 1 1 1
150(5) ) 5
mip = 150(5)p NiN,drds = T p (1 —r°)(1 —s)°drds
1 -1 -1 -1
~150(5) _i) <(1—s)3> B ]l
ST p[(r 3 AN
150(5)

= (7.83)(10)°° <2> =1.3(10) %k
e 9) =" &
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If we carry out all the integrations indicated to form the mass matrix, the final result for
the rectangular element is

26 13 07 1.3 0000 7
13 26 13 07 0000
07 13 26 13 (0’ (0) 8 8
(1= 1'300'3 (1)'302'6 26 13 07 13 |10 ke
00 0 0 13 26 13 07
000 0 07 13 26 13
L 00 0 0 13 07 13 26

We observe that the element mass matrix is symmetric, as expected. Also note that stor-
ing the entire matrix as shown would be quite inefficient, since only the 4 x 4 submatrix
of nonzero terms is needed.

Having developed a general formulation for the mass matrix of a finite
element, we return to the determination of the equations of motion of a structure
modeled via the finite element method and subjected to dynamic (that is, time-
dependent) loading. If we have in hand, as we do, the mass and stiffness matri-
ces of a finite element, we can assemble the global equations for a finite element
model of a structure and obtain an expression for the total energy in the form

Lo 7 . L7 T
E{CI} (Mg} + 5{4} [KHg} —{q} {f}=E (10.93)

where {¢} is the column matrix of displacements described in the global coordi-
nate system and all other terms are as previously defined. (At this point, we
reemphasize that Equation 10.93 models the response of an ideal elastic system,
which contains no mechanism for energy dissipation.) For a system as described,
total mechanical energy is constant, so that dE/dr = 0. As the mechanical
energy is expressed as a function of both velocity and displacement, the mini-
mization procedure requires that

dE  0E dq; JE dg;
dr — 9q; 9t dq; ot

-0 i=1P (10.94)

where we now represent the total number of degrees of freedom of the model as
P to avoid confusion with the mass matrix notation [M]. Application of Equa-
tion 10.94 to the energy represented by Equation 10.93 yields a system of ordi-
nary differential equations

[(MI{G} + [Kl{q} = {F} (10.95)

Equation 10.94 is not necessarily mathematically rigorous in every case. How-
ever, for the systems under consideration, in which there is no energy removal
mechanism and the total potential energy includes the effect of external forces, the
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resulting equations of motion are the same as those given by both the Lagrangian
approach and variational principles [5].

Examination of Equation 10.95 in light of known facts about the stiffness and
mass matrices reveals that the differential equations are coupled, at least through
the stiffness matrix, which is known to be symmetric but not diagonal. The phe-
nomena embodied here is referred to as elastic coupling, as the coupling terms
arise from the elastic stiffness matrix. In consistent mass matrices, the equations
are also coupled by the nondiagonal nature of the mass matrix; therefore, the term
inertia coupling is applied when the mass matrix is not diagonal. Obtaining solu-
tions for coupled differential equations is not generally a straightforward prode-
cure. We show, however, that the modal characteristics embodied in the equations
of motion can be used to advantage in examining system response to harmonic
(sinusoidal) forcing functions. The so-called harmonic response is a capability of
essentially any finite element software package, and the general techniques are
discussed in the following section, after a brief discussion of natural modes.

In the absence of externally applied nodal forces, Equation 10.95 is a system
of P homogeneous, linear second-order differential equations in the independent
variable time. Hence, we have an eigenvalue problem in which the eigenvalues
are the natural circular frequencies of oscillation of the structural system, and
the eigenvectors are the amplitude vectors (mode shapes) corresponding to the
natural frequencies. The frequency equation is represented by the determinant

|-’ [M]+[K]| =0 (10.96)

If formally expanded, this determinant yields a polynomial of order P in the vari-
able w?. Solution of the frequency polynomial results in computation of P natural
circular frequencies and P modal amplitude vectors. The free-vibration response
of such a system is then described by the sum (superposition) of the natural
vibration modes as
P
5i() =Y AVsin(wjr +d)  i=1P (10.97)

Jj=1

Note that the superposition indicated by Equation 10.97 is valid only for linear
differential equations. '

In Equation 10.97, the A(jl.) and ¢; are to be determined to satisfy given initial
conditions. In accord with previous examples for simpler systems, we know that
the amplitude vectors for a given modal frequency can be determined within a
single unknown constant, so we can write the modal amplitude vectors as

1
BY
[AD) = AD Y i=1,P (10.98)

0)
B
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where the (3 terms are known constants resulting from substitution of the natural
circular frequencies into the governing equations for the amplitudes. For a
system having P degrees of freedom, we have 2 P unknown constants A('l) and
i, i = 1, P in the motion solution. The constants are determined by application
of 2 P initial conditions, which are generally specified as the displacements and
velocities of the nodes at time + = 0. While the natural modes of free vibration
are important in and of themselves, application of modal analysis to the harmon-
ically forced response of structural systems is a very important concept. Prior to
examination of the forced response, we derive a very important property of the
principal vibration modes.

10.7 ORTHOGONALITY OF
THE PRINCIPAL MODES

The principal modes of vibration of systems with multiple degrees of freedom
share a fundamental mathematical property known as orthogonality. The free-vi-
bration response of a multiple degrees-of-freedom system is described by Equa-
tion 10.95 with {F} = 0 as

[MN4}+ [K1{q} = {0} (10.99)

Assuming that we have solved for the natural circular frequencies and the modal
amplitude vectors via the assumed solution form ¢;(t) = A; sin(wt 4+ ¢), substi-
tution of a particular frequency w; into Equation 10.99 gives

—of[MI{A"} + [K1{AP} =0 (10.100)
and for any other frequency w;
—w;[MI{AV} + [K1{AV} =0 (10.101)
Multiplying Equation 10.100 by {A”}” and Equation 10.101 by {A©}7 gives
—oX{ AP} M AV} + [} [K1{AD) =0 (10.102)
—o2{AD) M){AV) + {49} [K1{aD} = 0 (10.103)
Subtracting Equation 10.102 from Equation 10.103, we have
(AP IM{AD ) (@2 — D) =0 i#j (10.104)

In arriving at the result represented by Equation 10.104, we utilize the fact from
matrix algebra that [A]"[B][C] = [C]"[B][A], where [A], [B], [C] are any
three matrices for which the triple product is defined. As the two circular fre-
quencies in Equation 10.104 are distinct, we conclude that

{A(j)}T[M]{A(i)} =0 i # j (10.105)
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Equation 10.105 is the mathematical statement of orthogonality of the principal
modes of vibration. The orthogonality property provides a very powerful mathe-
matical technique for decoupling the equations of motion of a multiple degrees-
of-freedom system.

For a system exhibiting P degrees of freedom, we define the modal matrix as
a P x P matrix in which the columns are the amplitude vectors for each natural
mode of vibration; that is,

[A] = [{APHAP} ... {aP}] (10.106)

and consider the matrix triple product [S] = [A1T[M][A]. Per the orthogonality
condition, Equation 10.105, each off-diagonal term of the matrix represented
by the triple product is zero; hence, the matrix [S] = [A]T[M][A] is a diagonal
matrix. The diagonal (nonzero) terms of the matrix have magnitude

i = (A9 a9} i=1p (10.107)

As each modal amplitude vector is known only within a constant multiple (recall
in earlier examples that we set A(’l) = 1 arbitrarily), the modal amplitude vectors
can be manipulated such that the diagonal terms described by Equation 10.107
can be made to assume any desired numerical value. In particular, if the value is
selected as unity, so that

Si = {APY M{aP) =1 i=1,P (10.108)
then the modal amplitude vectors are said to be orthonormal and the matrix triple
product becomes

[S] = [A]"[M][A] = []] (10.109)

where [/] is the P x P identity matrix.

Normalizing the modal amplitude vectors per Equation 10.108 is a straight-
forward procedure, as follows. Let a specific modal amplitude be represented by
Equation 10.98 in which the first term is arbitrarily assigned value of unity. The
corresponding diagonal term of the modal matrix is then

P P
Z Z mjkA(jl:)A(Q = §,; = constant (10.110)
=1 k=1

If we redefine the terms of the modal amplitude vector so that

AD = L J i=1,P (10.111)

the matrix described by Equation 10.109 is indeed the identity matrix.

Having established the orthogonality concept and normalized the modal
matrix, we return to the general problem described by Equation 10.95, in which
the force vector is no longer assumed to be zero. For reasons that will become
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apparent, we introduce the change of variables

{g} = [Al{p} (10.112)

where {p} is the column matrix of generalized displacements, which are linear
combinations of the actual nodal displacements {¢}, and [A] is the normalized
modal matrix. Equation 10.95 then becomes

[MI[A]{p} + [K1[Al{p} = {F} (10.113)
Premultiplying by [A]?, we obtain
[ATT[MI[AN P} + [AT[K1[Al{p} = [A)"(F) (10.114)

Utilizing the orthogonality principle, Equation 10.114 is
LIH{p) + [A) [KI[AY{p} = [AT"(F) (10.115)

Now we must examine the stiffness effects as represented by [A1T[K][A]. Given
that [K] is a symmetric matrix, the triple product [A1T[K][A] is also a symmet-
ric matrix. Following the previous development of orthogonality of the principal
modes, the triple product [A1T[K][A] is also easily shown to be a diagonal ma-
trix. The values of the diagonal terms are found by multiplying Equation 10.100

by {A(i)}T to obtain

—oX AP M AP} + (a9} (K1 {AP} =0 i=1,P (10.116)

If the modal amplitude vectors have been normalized as described previously,
Equation 10.116 is

[AVY[K1f{AD) =w?>  i=1,P (10.117)

hence, the matrix triple product [A1T[K][A] produces a diagonal matrix having
diagonal terms equal to the squares of the natural circular frequencies of the prin-
cipal modes of vibration; that is,

w 0 - - - 0
0 w% .

[AI'[K1[A]l = | - : : (10.118)
K o} |

Finally, Equation 10.115 becomes
1B} + [°1{p} = [A){F} (10.119)

with matrix [w?] representing the diagonal matrix defined in Equation 10.118.

Using the data of Example 10.3, normalize the modal matrix and verify that[A]T [M][A] =
[71and [A]"[K][A] = [0’].
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H Solution
For the first mode, we have

m 0 0 1
S”={A<”}T[M]{A<“}=[1 1.4325 205111 0 m O 1.4325
0 0 2m]|2.0511

= 11.4404m

so the first modal amplitude vector is normalized by dividing each term by +/S;; =
3.3824.,/m, which gives the normalized vector as
0.2956
{AD} = —=10.4289

"1 0.6064

Applying the same procedure to the modal amplitude vectors for the second and third
modes gives

L[ 06575 | [ 06930
{AP} = —1 05618 {AP}) = —=1{ -0.7124
" -0.3550 "1 0.0782

and the normalized modal matrix is

0.2956 0.6575  0.6930
0.4289 0.5618 —0.7124
0.6064 —0.3550 0.0782

[A]Zﬁ

To verity Equation 10.109, we form the triple product

L [0.2956 04289 06064 T[m 0 0
[A)T[M][A] = —| 0.6575 0.5618 —03550 || 0 m 0
106930 07124 00782 [0 0 2m

£0.2956  0.6575 0.6930 7 [1 0 0

x | 04289 05618 —0.7124 =[0 10

| 0.6064 —0.3550 0.0782 | [0 0 1

as expected.
The triple product with respect to the stiffness matrix is

L [0-2956 04289 0.6064 T3 =2 0
[AI[K][A]l= —| 0.6575 05618 —03550 || -2 3 ~—1I
106990 -07124 00782 || 0 -1 1

70.2956 0.6575  0.6990 ]
x | 0.4289 0.5618 —0.7124
| 0.6064 —0.3550 0.0782 |

which evaluates to
0.1532 0 0 w?
[AIT[K][A] = — 0 1.2912 0 =10 o 0
"L o 0 50557 0 0 o
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10.8 HARMONIC RESPONSE USING
MODE SUPERPOSITION

The orthogonality condition of the principal modes is especially useful in ana-
lyzing the steady-state response of finite element models to harmonic forcing
functions. In this context, a harmonic forcing function is described as F(t) =
Fysin wst, where Fy is a constant force magnitude and wy is a constant circular
frequency of the forcing function. Prior to applying the mode superposition
method, a complete modal analysis must be performed to obtain the natural cir-
cular frequencies and normalized modal amplitude vectors (hence, the normal-
ized modal matrix). Using the techniques of the previous section, the equations
of motion for the forced case become

[T1{p} + [0’){p} = [A]"{F} (10.120)

Assuming that the structural model under consideration exhibits P total degrees
of freedom, Equation 10.120 represents a set of P uncoupled, ordinary differen-
tial equations of the form

P
pi+olp=Y AVF@  i=1,P (10.121)
j=1

Observing that the right-hand side is a known linear combination of harmonic
forces (these are the so-called generalized forces), the solution to each of the
equations is a summation of particular solutions corresponding to each of the
harmonic force terms. By analogy with the procedure used for forced vibration
of a single degree-of-freedom system in Section 10.2, the solutions of Equa-
tion 10.121 are given by

P @)
pi) =Y 2L sinwyr i=1,P (10.122)

j=1 @i T @y
Hence, the generalized displacements p;(t) are represented by a combination
of independent harmonic motions having frequencies corresponding to the
forcing frequencies. Note that, if a forcing frequency is close in value to one of
the natural frequencies, the denominator term becomes small and the forced
response amplitude is large; hence, there are many possibilities for a resonant
condition.

The mode superposition method provides mathematical convenience in
obtaining the forced response, because the equations of motion become uncou-
pled and solution is straightforward. However, Equation 10.122 gives the dis-
placement response of generalized displacements rather than actual nodal
displacements, owing to the transformation described by Equation 10.112. As the
modal matrix is known, conversion of the generalized displacements to actual
displacements requires only multiplication by the normalized modal matrix.
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EXAMPLE 10.8

Again consider the 3 degrees-of-freedom system of Example 10.3 and determine the

steady state response when a downward force F = F; sin w,¢ is applied to mass 2.

H Solution

For the given conditions, the applied nodal force vector is

and the generalized forces are

0.2956

[A]"{F} = —| 0.6575
m
vV 0.6930

0
{F(l)} = FO Sil’l(,l)fl
0
0.4209 0.6064 0
0.5618  —0.3550 Fysinwst
—0.7124  0.0782 0

0.4209

=4 0.5618

—0.7124 v

The equations of motion for the generalized coordinates are then

for which the solutions are

tion 10.112:

{x} =1Al{p} =

e
Jm

54w 0.4209F; sin wyt
o) =
Pi 1P1 «/’%
54w 0.5618 F sinwyt
o =
P2 Hh P2 \/11_1
.. + 2 —07124F() sin (th
o — e
pP3 3P3 I
0.4209F, sin wt
pi(n) = 272/
(‘”1 - wf)ﬂ
05618F0 SiIl(.l)ff
pt) = ——F—FF—
(03 — w})ym
—0.7124Fy sinwt
pi(t) = — 52

0.2956
0.4209
0.6064

0.6575
0.5618
—0.3550

(03— o)

The actual displacements, x(#) = ¢(¢) in this case, are obtained by application of Equa-

0.6930
—0.7124
0.0782

Wy — (,l)f

0.4209
0] — o}

0.5618 | Fysinays
w; — Jm
—-0.7124

.2

Fy sin wrt
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Expanding, the steady-state displacements are given by

0.1244 0.3694
x1(t) = 3 5+ = w%—w%

—0.4937 F() sin (L)fl
W] — (,l)f

2
0, — 0; m

0.1772 0.3156 0.5075 \ Fysinow;t
%) = u)z—m2+(u2—u)2+u)2—m2 m .
1 f 2 f 3 !

2
w3 — (.Of

0.2552 —0.1994 —0.0557 \ Fy sin wyt
x3(1) = 2 >t 2 2 '

1~ wf (1)2 — W ¥ m
A few observations need to be made regarding the displacements calculated in this
example:

1. The displacement of each mass is a sinusoidal oscillation about the equilibrium
position, and the circular frequency of the oscillation is the same as the frequency
of the forcing function.

2. The characterstics of the principal modes of vibration are reflected in the solutions,
owing to the effects of the natural circular frequencies and modal amplitude vectors
in determining the forced oscillation amplitudes.

3. The displacement solutions represent only the forced motion of each mass; in
addition, free vibration may also exist in superposition with the forced response.

4. Energy dissipation mechanisms are not incorporated into the model.

The mode superposition method may seem quite complicated and, when at-
tempting to obtain solutions by hand, the method is indeed tedious. However, the
required computations are readily amenable to digital computer techniques and
quite easily programmed. Additional ramifications of computer techniques for
the method will be discussed in a following article.

10.9 ENERGY DISSIPATION:
STRUCTURAL DAMPING

To this point, the dynamic analysis techniques dealt only with structural systems
in which there is no mechanism for energy dissipation. As stated earlier, all real
systems exhibit such dissipation and, unlike the simple models presented, do not
oscillate forever, as predicted by the ideal model solutions. In structural systems,
the phenomenon of energy dissipation is referred to as damping. Damping may
take on many physical forms, including devices specifically designed for the pur-
pose (passive and active damping devices), sliding friction, and the internal dis-
sipation characteristics of materials subjected to cyclic loading. In this section,
we begin with an idealized model of damping for the simple harmonic oscillator
and extend the damping concept to full-scale structural models.
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kx cx

(a) (®) (©

Figure 10.13

(@) A spring-mass system with damping. (b) The schematic
representation of a dashpot piston. (c) A free-body diagram
of a mass with the damping force included.

Figure 10.13a depicts a simple harmonic oscillator to which has been added a
dashpot. A dashpot is a damping device that utilizes a piston moving through a
viscous fluid to remove energy via shear stress in the fluid and associated heat gen-
eration. The piston typically has small holes to allow the fluid to pass through but
is otherwise sealed on its periphery, as schematically depicted in Figure 10.13b.
The force exerted by such a device is known to be directly proportional to the
velocity of the piston as

f1=—ci (10.123)

where f, is the damping force, c is the damping coefficient of the device, and x
is velocity of the mass assumed to be directly and rigidly connected to the piston
of the damper. The dynamic free-body diagram of Figure 10.13c represents a
situation at an arbitrary time with the system in motion. As in the undamped case
considered earlier, we assume that displacement is measured from the equilib-
rium position. Under the conditions stated, the equation of motion of the mass is

mi+cx +kx =0 (10.124)

Owing to the form of Equation 10.124, the solution is assumed in exponential
form as

x(t) = Ce" (10.125)

where C and s are constants to be determined. Substitution of the assumed solu-
tion yields

(ms* +cs +k)Ce™ =0 (10.126)
As we seek nontrivial solutions valid for all values of time, we conclude that
ms*+cs+k=0 (10.127)

must hold if we are to obtain a general solution. Equation 10.127 is the charac-
teristic equation (also the frequency equation) for the damped single degree-of-
freedom system. From analyses of undamped vibration, we know that the natural
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frequency given by w® = k/m is an important property of the system, so we mod-
ify the characteristic equation to

2+ S5+ 02=0 (10.128)
m

Solving Equation 10.128 by the quadratic formula yields two roots, as expected,
given by

(10.129a)

1 c\? c\?
e CREE
2 m m

(10.129b)

The most important characteristic of the roots is the value of (¢/m)> — 4w?, and
there are three cases of importance:

1. If(¢/ m)? — 4w* > 0, the roots are real, distinct, and negative; and the
displacement response is the sum of decaying exponentials.

2. If(¢/ m)? — 40> = 0, we have a case of repeated roots; for this situation,
the displacement is also shown to be a decaying exponential. It is
convenient to define this as a critical case and let the value of the damping
coefficient ¢ correspond to the so-called critical damping coefficient.
Hence, c? = 4w’m® orc, = 2mw.

3. If(c/m)? — 40” < 0, the roots of the characteristic equation are
imaginary; this case can be shown [2] to represent decaying sinusoidal
oscillations.

Regardless of the amount of damping present, the free-vibration response, as
shown by the preceding analysis, is an exponentially decaying function in time.
This gives more credence to our previous discussion of harmonic response, in
which we ignored the free vibrations. In general, a system response is defined
primarily by the applied forcing functions, as the natural (free, principal) vibra-
tions die out with damping. The response of a damped spring-mass system cor-
responding to each of the three cases of damping is depicted in Figure 10.14.

We now define the damping ratio as{ = c¢/2mw and note that, if { > 1, we
have what is known as overdamped motion; if { = 1, the motion is said to be
critically damped; and if { < 1, the motion is underdamped. As most structural
systems are underdamped, we focus on the case of { < 1. For this situation, it is
readily shown [2] that the response of a damped harmonic oscillator is described
by

x(1) = et (A sin wgt + B cos wyt) (10.130)
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x(1)
/Xe—{a)t
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(<1
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x(1) x(1)
t t
(=1 (>1

(b) (©

Figure 10.14 Characteristic damped motions: (a) Underdamped.
(b) Critically damped. (c) Overdamped.

where w, is the damped natural circular frequency, given by
k
w;=(1-)— (10.131)
m

and the coefficients are determined by the initial conditions.
While we demonstrate the effect of damping via the simple harmonic oscil-
lator, several points can be made that are applicable to any structural system:

1. The natural frequencies of vibration of a system are reduced by the effect
of damping, per Equation 10.131.

2. The free vibrations decay exponentially to zero because of the effects of
damping.

3. Inlight of point 2, in the case of forced vibration, the steady-state solution
is driven only by the forcing functions.

4. Damping is assumed to be linearly proportional to nodal velocities.

10.9.1 General Structural Damping

An elastic structure subjected to dynamic loading does not, in general, have spe-
cific damping elements attached. Instead, the energy dissipation characteristics
of the structure are inherent to its mechanical properties. How does, for example,
a cantilevered beam, when “tweaked” at one end, finally stop vibrating? (If the
reader has a flexible ruler at hand, many experiments can be performed to exhibit
the change in fundamental frequency as a function of beam length as well as the
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1]
1 2 —>

k

Figure 10.15 A model of a
bar element with damping.

decay of the motion.) The answer to the damping question is complex. For
example, structures are subjected to the atmosphere, so that air resistance is a
factor. Air resistance is, in general, proportional to velocity squared, so this effect
is nonlinear. Fortunately, air resistance in most cases is negligible. On the other
hand, the internal friction of a material is not negligible and must be considered.

If we incorporate the concepts of damping as applied to the simple harmonic
oscillator, the equations of motion of a finite element model of a structure become

(MG} + [CHq} + [KH{g} = {F(D)} (10.132)

where [C] is the system viscous damping matrix assembled by the usual rules. For
example, a bar element with damping is mathematically modeled as a linear
spring and a dashpot connected in parallel to the element nodes as in Figure 10.15.
The element damping matrix is

[¢©] = [ ‘ ‘C} (10.133)

—c ¢
and the element equations of motion are

[m O iy + [ u} + [k u} = { £} (10.134)

The element damping matrix is symmetric and singular, and the individual terms
are assigned to the global damping matrix in the same manner as the mass and
stiffness matrices. Assembly of the global equations of motion for a finite ele-
ment model of a damped structure is simple. Determination of the effective vis-
cous damping coefficients for structural elements is not so simple.

Damping due to internal friction is known as structural damping, and exper-
iments on many different elastic materials have shown that the energy loss per
motion cycle in structural damping is proportional to the material stiffness and
the square of displacement amplitude [2]. That is,

AUgyete = Nk X? (10.135)

where \ is a dimensionless structural damping coefficient, k is the material stiff-
ness, and X is the displacement amplitude. By equating the energy loss per cycle
to the energy loss per cycle in viscous damping, an equivalent viscous damping
coefficient is obtained:

Nk
Coq = " (10.136)
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where w is circular frequency of oscillation. That the equivalent damping coeffi-
cient depends on frequency is somewhat troublesome, since the implication is
that different coefficients are required for different frequencies. If we consider a
single degree-of-freedom system for which w = \/k/m, the equivalent damping
coefficient given by Equation 10.136 becomes

Nk k
Ceq = — = N——== = Nkm (10.137)
) k/m

indicating that the damping coefficient is proportional, at least in a general sense,
to both stiffness and mass. We return to this observation shortly.

Next we consider the application of the transformation using the normal-
ized matrix as described in Section 10.7. Applying the transformation to Equa-
tion 10.132 results in

(P} + [A[CIAN P} + [0°1{p} = [AT {F(1)} (10.138)
The transformed damping matrix
[C'] = [A]"[CI[A] (10.139)

is easily shown to be a symmetric matrix, but the matrix is not necessarily diag-
onal. The transformation does not necessarily result in decoupling the equations
of motion, and the simplification of the mode superposition method is not neces-
sarily available. If, however, the damping matrix is such that

[C]l=a[M]+ B[K] (10.140)
where « and B are constants, then
[C'] = a[A]"[M][A] + BIAIT[K][A] = a[I]+ Blw?]  (10.141)

is a diagonal matrix and the differential equations of motion are decoupled. Note
that the assertion of Equation 10.140 leads directly to the diagonalization of the
damping matrix as given by Equation 10.141. Hence, Equation 10.138 becomes

[P} + (o + Blw’D{p) + [0 p} = [A] {F (1)) (10.142)

As the differential equations represented by Equation 10.142 are decoupled, let
us now examine the solution of one such equation

pi + (a4 Bo?) pi + w’pi = ZA(')F(t) (10.143)

where P is the total number of degrees of freedom. Without loss of generality and
for convenience of illustration, we consider Equation 10.143 for only one of the
terms on the right-hand side, assumed to be a harmonic force such that

pi+ (o + Bw}) p; + o p; = Fysin wyt (10.144)
and assume that the solution is

pi(t) = X;sinwst + Y; cos wyt (10.145)
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Substitution of the assumed solution into the governing equation yields
—X,Aw]% sin o/t — Yiwj% cos ot + (a + Bwiz)mf(X,- cos wst — Y;sinwyt)
+ w7 X; sin ot + o7 Y; cos oyt = Fysin ot (10.146)
Equating coefficients of sine and cosine terms yields the algebraic equations
2_ 2 _ 2 _
wi —ef ‘*’f(z‘)”r%‘”z) {Xl}z{FO} (10.147)
of (o + Boy) w; — 0y Yi 0
for determination of the forced amplitudes X; and Y;. The solutions are
Fo(of — o)

(0 — 03)” + w2 (a + Bwp)’

X; =

(10.148)
—Fou)f(a + [3(1)[»2)

(07— 02) + 0o + Bo?)

To examine the character of the solution represented by Equation 10.145, we
convert the solution to the form

pi(t) = Z;sin(wst + dy) (10.149)
with
YA
Zi = X*+7Y? d & =tan ! =~
VX7 +Y~ and ¢ =tan X,
to obtain
F
pi(t) = - 0 sin(ws 4 d;) (10.150)
(o7 = 03) + o3+ gy
—0% (o + Bw?
¢; = tan™! <M> (10.151)
(1)1» — (,l)f

Again, the mathematics required to obtain these solutions are algebraically
tedious; however, Equations 10.150 and 10.151 are perfectly general, in that the
equations give the solution for every equation in 10.142, provided the applied
nodal forces are harmonic. Such solutions are easily generated via digital com-
puter software. The actual displacements are then obtained by application of
Equation 10.112, as in the case of undamped systems.

The equivalent viscous damping described in Equation 10.140 is known as
Rayleigh damping [6] and used very often in structural analysis. It can be shown,
by comparison to a damped single degree-of-freedom system that

o+ Bmlz = 2w;{; (10.152)
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where {; is the damping ratio corresponding to the ith mode of vibration, that is,

o Pw;

b= 20, T

represents the degree of damping for the ith mode. Equation 10.153 provides a

means of estimating o and B if realistic estimates of the degree of damping for

two modes are known. The realistic estimates are most generally obtained ex-

perimentally or may be applied by rule of thumb. The following example illus-
trates the computations and the effect on other modes.

(10.153)
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EXAMPLE 10.9

Experiments on a prototype structure indicate that the effective viscous damping ratio
is { = 0.03 (3 percent) when the oscillation frequency is w = 5 rad/sec and { = 0.1
(10 percent) for frequency w = 15 rad/sec. Determine the Rayleigh damping factors «
and B for these known conditions.

H Solution
Applying Equation 10.153 to each of the known conditions yields
a 5B
003 = —+ —
2(5) 2
a 158
0.1 = —_—
2(15) * 2
Simultaneous solution provides the Rayleigh coefficients as
a = —0.0375
B = 0.0135
0.25
0.2
_~
— —
0.15 >
_~
&0l
_~
0.05 -
oL
4
—0.05

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

w;

Figure 10.16 Equivalent damping factor versus frequency for
Example 10.9.
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If we were to apply the equivalent damping given by these values to the entire frequency
spectrum of a structure, the effective damping ratio for any mode would be given by

_ —0.0375 + 0.0135w?

P =

2(1),'

If the values of a and B are applied to a multiple degrees-of-freedom system, the damp-
ing ratio for each frequency is different. To illustrate the variation, Figure 10.16 depicts
the modal damping ratio as a function of frequency. The plot shows that, of course, the
ratios for the specified frequencies are exact and the damping ratios vary significantly for
other frequencies.

Rayleigh damping as just described is not the only approach to structural
damping used in finite element analysis. Finite element software packages also
include options for specifying damping as a material-dependent property, as
opposed to a property of the structure, as well as defining specific damping
elements (finite elements) that may be added at any geometric location in the struc-
ture. The last capability allows the finite element analyst to examine the effects of
energy dissipation elements as applied to specific locations.

10.10 TRANSIENT DYNAMIC RESPONSE

In Chapter 7, finite difference methods for direct numerical integration of finite
element models of heat transfer problems are introduced. In those applications,
we deal with a scalar field variable, temperature, and first-order governing equa-
tions. Therefore, we need only to develop finite difference approximations to first
derivatives. For structural dynamic systems, we have a set of second-order dif-
ferential equations

[M{3} + [CI{} + [K1{8} = {F (1)} (10.154)

representing the assembled finite element model of a structure subjected to gen-
eral (nonharmonic) forcing functions. In applying finite difference methods to
Equation 10.154, we assume that the state of the system is known at time ¢ and
we wish to compute the displacements at time ¢ + At; that is, we wish to solve

[M1{8(t + At} + [CHB(t + AD} + [KI{3(t + AD)} = {F(t + At)}  (10.155)

for {8(r + A1)}.

Many finite difference techniques exist for solving the system of equations
represented by Equation 10.155. Here, we describe Newmark’s method [7] also
referred to as the constant acceleration method. In the Newmark method, it is as-
sumed that the acceleration during an integration time step At is constant and an
average value. For constant acceleration, we can write the kinematic relations

) . A2
B(1 + Af) = 8(1) + BN AT + By (10.156)

8(t + A1) = 8(1) + S At (10.157)
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The constant, average acceleration is

gav — w (10.158)

Combining Equations 10.156 and 10.158 yields
2

. . . At
8(t + At) = 8(t) + d(t) At + [d(t + At) + S(t)]T (10.159)
which is solved for the acceleration at ¢ + At to obtain
. 4 4 . .
o(t + At) = —[8(t + At) — d(t)] — —d(r) — (¢ 10.160
(t + A1) Atz[(+ ) —a(1)] At() (1) ( )

If we also substitute Equations 10.158 and 10.160 into Equation 10.157, we find
the velocity at time ¢ + At to be given by

2 .

E[S(t + Ar) — 3(1)] — d(1) (10.161)
Equations 10.160 and 10.161 express acceleration and velocity at # + At in
terms of known conditions at the previous time step and the displacement at
t + Ar. If these relations are substituted into Equation 10.155, we obtain, after a
bit of algebraic manipulation,

3(r + A1) =

4 2
—— M3t + A} + —[CI{d( + A} + [K]{d(r + An)}
At At
.. 4 | 4
={F(+ At} + [M]<{8(t)} + E{B(t)} + F{B(t)})

. 2
+ [C]({S(r)} + E{S([)}> (10.162)

Equation 10.162 is the recurrence relation for the Newmark method. While the
relation may look complicated, it must be realized that the mass, damping, and
stiffness matrices are known, so the equations are just an algebraic system in the
unknown displacements at time ¢t + At. The right-hand side of the system is
known in terms of the solution at the previous time step and the applied forces.
Equation 10.162 is often written symbolically as

[KI{3(t + At)} = {Fen(t + A1)} (10.163)
with
_ 4 2
(K] = 5M]+ —IC]+ (K] (10.164)

{Feii(t + At} ={F(t + A1)}
. 4 . 4
+ [M]<{8(t)} + A—I{B(t)} + A—tz{ﬁ(t)})

+ [C]({S(r)} + %{8@)}) (10.165)

© The McGraw-Hill
Companies, 2004

433



Hutton: Fundamentals of
Finite Element Analysis

434

10. Structural Dynamics Text © The McGraw-Hill
Companies, 2004

CHAPTER 10 Structural Dynamics

The system of algebraic equations represented by Equation 10.163 can be solved
at each time step for the unknown displacements. For a constant time step Az,
matrix [K] is constant and need be computed only once. The right-hand side
{Fer(r + At)} must, of course, be updated at each time step. At each time step, the
system of algebraic equations must be solved to obtain displacements. For this rea-
son, the procedure is known as an implicit method. By back substitution through
the appropriate relations, velocities and accelerations can also be obtained.

The Newmark method is known to be unconditionally stable [8]. While the
details are beyond the scope of this text, stability (more to the point, instability) of
a finite difference technique means that, under certain conditions, the computed
displacements may grow without bound as the solution procedure “marches” in
time. Several finite difference methods are known to be conditionally stable,
meaning that accurate results are obtained only if the time step Az is less than a
prescribed critical value. This is not the case with the Newmark method. This
does not mean, however, that the results are independent of the selected time step.
Accuracy of any finite difference technique improves as the time step is reduced,
and this phenomenon is a convergence concern similar to mesh refinement in a
finite element model. For dynamic response of a finite element model, we must
be concerned with not only the convergence related to the finite element mesh
but also the time step convergence of the finite difference method selected. As
discussed in a following section, finite element software for the transient dynamic
response requires the user to specify “load steps,” which represent the change
in loading as a function of time. The software then solves the finite element equa-
tions as if the problem is one of static equilibrium at the specified loading con-
dition. It is very important to note that the system equations represented by Equa-
tion 10.163 are based on the finite element model, even though the solution
procedure is that of the finite difference technique in time.

10.11 BAR ELEMENT MASS MATRIX
IN TWO-DIMENSIONAL TRUSS
STRUCTURES

The bar-element-consistent mass matrix defined in Equation 10.58 is valid only
for axial vibrations. When bar elements are used in modeling two- and three-
dimensional truss structures, additional considerations are required, and the mass
matrix modified accordingly. When a truss undergoes deflection, either statically
or dynamically, individual elements experience both axial and transverse dis-
placement resulting from overall structural displacement and element intercon-
nections at nodes. In Chapter 3, transverse displacement of elements was ignored
in development of the element stiffness matrix as there is no transverse stiffness
owing to the assumption of pin connections, hence free rotation. However, in the
dynamic case, transverse motion introduces additional kinetic energy, which
must be taken into account.
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Vo Uy

N

2

v (x, 1)

V] u u (x, 1)
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(@ (b)

Figure 10.17 A bar element in two-dimensional motion:
(@) Nodal displacements. (b) Differential element.

Consider the differential volume of a bar element undergoing both axial and
transverse displacement, as shown in Figure 10.17. We assume a dynamic situa-
tion such that both displacement components vary with position and time. The
kinetic energy of the differential volume is

ar = Load (8u>2+<8v>2 =A@+ (10.166)
L AFY ar) | T pPaGe Ty '

and the total kinetic energy of the bar becomes
L L
1 " 1 >
T =-pA | udx+ EpA vedx (10.167)

2
0 0

Observing that the transverse displacement can be expressed in terms of the
transverse displacements of the element nodes, using the same interpolation
functions as for axial displacement, we have

u(x, 1) = Ni(x)ui(r) + Na(x)u(t)

(10.168)
v(x, 1) = Ni(x)vi(t) + Na(x)va(1)
Using matrix notation, the velocities are written as
i(x, 1) = [N Nz]{ o }
23]
(10.169)

w(x, 1) = [N, Nz]{ V1 }
V2

and element kinetic energy becomes

L L
_l ‘AT T . l T T .
T = sz{u} [N]'[N]dx{u} + 2pA{v} [N]'[N]dx{v} (10.170)
0 0
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Expressing the nodal velocities as
iy
Vi

(8} = (10.171)

175
V2
the kinetic energy expression can be rewritten in the form
1 rr
T =} [m5]3)
N 0 NN 0

1. 0 N2 0 NN,
=—87A/ 1 dx{d 10.172
2{ 1'p NN, 0 N2 0 8}« )

0
0 NN 0 N3

From Equation 10.172, the mass matrix of the bar element in two dimensions is
identified as

N? 0 NN O

L 0 N2 0 NN 2 01 0
AL
[m<g>]=pA/ i R PR 0201
NN, 0 N3 0 6 |1 0 2 0
0 01 0 2

0 NN 0 N}
(10.173)

The mass matrix defined by Equation 10.173 is described in the element
(local) coordinate system, since the axial and transverse directions are defined in
terms of the axis of the element. How, then, is this mass matrix transformed to
the global coordinate system of a structure? Recall that, in Chapter 3, the element
axial displacements are expressed in terms of global displacements via a rotation
transformation of the element x axis. To reiterate, the transverse displacements
were not considered, as no stiffness is associated with the transverse motion.
Now, however, the transverse displacements must be included in the transforma-
tion to global coordinates because of the associated mass and kinetic energy.

Figure 10.18 depicts a single node of a bar element oriented at angle 6 rela-
tive to the X axis of a global coordinate system. Nodal displacements in the
element frame are u,, v, and corresponding global displacements are Us, Uy,
respectively. As the displacement in the two coordinate systems must be the
same, we have

U, = Uzcos 0 + Uysin B
vy = —Uszsin 0 + Uy cos 0

up | | cos6 sin6 Us
{ V2 } - [—Sine cose:| { U4} (10.175)

(10.174)

or
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Uy
V2

Figure 10.18 The relation
of element and global dis-
placements at a single node.

As the same relation holds at the other element node, the complete transforma-
tion is

U cos® sin® 0 0 U,
vi | _ | —sin® cos6 0 0 U8 _(R1{U)  (10.176)
up 0 0 cos® sin6 Us
v 0 0 —sin® cos0 Us

Since the nodal velocities are related by the same transformation, substitution
into the kinetic energy expression shows that the mass matrix in the global coor-
dinate system is

[M5] = (R [m'](R] (10.177)

where we again use the subscript to indicate that the mass matrix is applicable to
two-dimensional structures.

If the matrix multiplications indicated in Equation 10.177 are performed for
an arbitrary angle, the resulting global mass matrix for a bar element is found to be

2010

o1_PALIO 2 0 1

[M5] 1102 0 (10.178)
0102

and the result is exactly the same as the mass matrix in the element coordinate sys-
tem regardless of element orientation in the global system. This phenomenon
should come as no surprise. Mass is an absolute scalar property and therefore in-
dependent of coordinate system. A similar development leads to the same conclu-
sion when a bar element is used in modeling three-dimensional truss structures.

The complication described for including the additional transverse inertia
effects of the bar element are also applicable to the one-dimensional beam (flex-
ure) element. The mass matrix for the beam element given by Equation 10.78
is applicable only in a one-dimensional model. If the flexure element is used in
modeling two- or three-dimensional frame structures, additional consideration
must be given to formulation of the element mass matrix owing to axial inertia

© The McGraw-Hill
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effects. For beam elements, most finite software packages include axial effects
(i.e., the beam element is a combination of the bar element and the two-
dimensional flexure element) and all appropriate inertia effects are included in
formulation of the consistent mass matrix.

As a complete example of modal analysis, we return to the truss structure of Section 3.7,
repeated here as Figure 10.19. Note that, for the current example, the static loads applied
in the earlier example have been removed. As we are interested here in the free-vibration
response of the structure, the static loads are of no consequence in the dynamic analysis.
With the additional specification that material density is p = 2.6(10)™* Ib-s¥in.*, we
solve the eigenvalue problem to determine the natural circular frequencies and modal
amplitude vectors for free vibration of the structure.

As the global stiffness matrix has already been assembled, the procedure is not
repeated here. We must, however, assemble the global mass matrix using the element
numbers and global node numbers as shown. The element and global mass matrices for
the bar element in two dimensions are given by Equation 10.178 as

2 010

[m©] = PALIO 2 0 1
6 1 02 0

01 0 2

Aselements 1, 3, 4, 5, 7, and 8 have the same length, area, and density, we have

() =[] =[] = [9] = [17] = [

2010
_(2.610) (1540 |0 2 0 1
- 6 1 020

010 2

50 0 26 0
=0 520 2(')6 (10)> Ib-s/in.
0 26 0 52

while for elements 2 and 6

2.6(10)74(1.5)(40+/2)
6

[M®] =[M®] =

S = O N
— o N O
(el S e
N O = O

736 0 368 0
0 736 0 3.68

368 0 736 0
0 368 0 736

(10)~3 1b-s%/in.
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Vt 4 6
Ap

{
40in. 2 g
L
N 3 5
| 40in. | 40in. |

Figure 10.19 Eight-element truss of
Example 10.10.

The element-to-global displacement relations are as given in Chapter 3. Using the direct
assembly procedure, the global mass matrix is

[12.56 0 0 0 26 0 3.68 0 0 0 0 0
0 1256 0 0 0 26 0 3.68 0 0 0 0
0 0 52 .0 0 O 2.6 0 0 0 0 0
0 0 0 52 0 O 0 2.6 0 0 0 0
2.6 0 0O 0 78 0 2.6 0 2.6 0 0 0
(M] = 0 2.6 0o o0 0 78 0 2.6 0 2.6 0 0 (10)~3

3.68 0 26 0 26 0 2252 0 3.68 0 2.6 0
0 368 0 26 0 26 0 22.52 0 3.68 0 2.6
0 0 0 0 26 0 3.68 0 17.76 0 2.6 0
0 0 0O 0 0 26 0 3.68 0 1776 0 2.6
0 0 o o0 0 O 2.6 0 2.6 0 104 0

L 0 0 o o0 0 O 0 2.6 0 2.6 0 1044

Applying the constraint conditions U; = U, = U; = U, = 0, the mass matrix for the
active degrees of freedom becomes

26 0 252 0
o 26 0 25 0 368 0 26 .
Md=156 0 368 0 1776 0o 26 o |10 ITb-svin
0 26 0 368 0 1776 0 26
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Extracting the data from Section 3.7, the stiffness matrix for the active degrees of free-
dom is

7.5 0 0 0 =3.75 0 0 0
0 3.75 0 =3.75 0 0 0 0
0 0 10.15 0 —-1.325 1.325 -=3.75 0
(K,] = 0 -3.75 0 6.4 1.325 —1.325 0 0 10° Ib/in.
-3.75 0 —1.325 1325 5075 —1.325 0 0
0 0 1.325 —-1.325 —-1.325 5.075 0 —3.75
0 0 =3.75 0 0 0 3.75 0
L 0 0 0 0 0 =3.75 0 3.75 |

The finite element model for the truss exhibits 8 degrees of freedom; hence, the charac-
teristic determinant

|—w’[M]+[K]| =0

yields, theoretically, eight natural frequencies of oscillation and eight corresponding
modal shapes (modal amplitude vectors). For this example, the natural modes were com-
puted using the student edition of the ANSYS program [9], with the results shown in
Table 10.1. The corresponding modal amplitude vectors (normalized to the mass matrix
as discussed relative to orthogonality) are shown in Table 10.2.

The frequencies are observed to be quite large in magnitude. The fundamental fre-
quency, about 122 cycles/sec is beyond the general comprehension of the human eye-
brain interface (30 Hz is the accepted cutoff based on computer graphics research [10]).
The high frequencies are not uncommon in such structures. The data used in this example
correspond approximately to the material properties of aluminum; a light material with
good stiffness relative to weight. Recalling the basic relation o = /k/m, high natural
frequencies should be expected.

The mode shapes provide an indication of the geometric nature of the natural modes.
As such, the numbers in Table 10.2 are not at all indicative of amplitude values; instead,

Table 10.1 Natural Modes

Frequency
Mode Rad/sec Hz
1 767.1 122.1
2 2082.3 3314
3 2958.7 470.9
4 4504.8 716.9
5 6790.9 1080.8
6 7975.9 1269.4
7 8664.5 1379.0
8 8977.4 1428.8
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Table 10.2 Modal Amplitude Vectors
Mode
Displacement 1 2 3 4 5 6 7 8
Us 0.2605 2.194 1.213 —3.594 —1.445 —1.802 4,772 —4.368
Us 2.207 —3.282 3.125 —2.1412 5.826 —0.934 1.058 0.727
U; —0.7754 0.7169 2.888 2.370 —0.142 —3.830 —2.174 —0.464
Us 2.128 —2.686 1.957 —0.4322 —4.274 0.569 —0.341 0.483
Uy 0.5156 3.855 1.706 —3.934 —0.055 1.981 —2.781 3.956
Uy 4.118 2.556 —1.459 1.133 0.908 1.629 —3.319 —4.407
Uy —0.7894 0.9712 4.183 4917 0.737 6.077 4.392 —1.205
Uy 4.213 2.901 —1.888 2.818 0.604 —3.400 4.828 5.344
/// || o =| ———___—_————:’ |\::—_‘— l‘|
/// |= \\\ i //,/ :I ‘l
YV 1 \\\ | /// l. \\\ ‘l
/,/ .: e ! S : \\\ |
Y N Y ! S|
N / | ~d !
_________________________ N i RN
(@) (b)

Figure 10.20

(@) Fundamental mode shape of the truss in Example 10.10.
(b) Second mode shape of the truss.

these are relative values of the motion of each node. It is more insightful to examine plots
of the mode shapes; that is, plots of the structure depicting the shape of the structure if it
did indeed oscillate in one of its natural modes. To this end, we present the mode shape
corresponding to mode 1 in Figure 10.20a. Note that, in this fundamental mode, the truss
vibrates much as a cantilevered beam about the constrained nodes. On the other hand,
Figure 10.20b illustrates the mode shape for mode 2 oscillation. In mode 2, the structure
exhibits an antisymmetric motion, in which the “halves” of the structure move in opposi-
tion to one another. Examination of the other modes reveals additional differences in the
mode shapes.

Noting that Table 10.2 is, in fact, the modal matrix, it is a relatively simple matter to
check the orthogonality conditions by forming the matrix triple products

[A]"[MI1[A] = []]
[AI"[K1[A] = o’[1]

Within reasonable numerical accuracy, the relations are indeed true for this example. We
leave the detailed check as an exercise.
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10.12 PRACTICAL CONSIDERATIONS

The major problem inherent to dynamic structural analysis is the time-consuming
and costly amount of computation required. In a finite difference technique, such
as that represented by Equation 10.163, the system of equations must be solved at
every time step over the time interval of interest. For convergence, the time step
is generally quite small, so the amount of computation required is huge. In modal
analysis, the burden is in computing natural frequencies and mode shapes. As
practical finite element models can contain tens of thousands of degrees of free-
dom, the time and expense of computing all of the frequencies and mode shapes
is prohibitive. Fortunately, to obtain reasonable approximations of dynamic
response, it is seldom necessary to solve the full eigenvalue problem. Two practi-
cal arguments underlie the preceding statement. First, the lower-valued frequen-
cies and corresponding mode shapes are more important in describing structural
behavior. This is because the higher-valued frequencies most often represent
vibration of individual elements and do not contribute significantly to overall
structural response. Second, when structures are subjected to time-dependent
forcing functions, the range of forcing frequencies to be experienced is reason-
ably predictable. Therefore, only system natural frequencies around that range are
of concern in examining resonance possibilities.

Based on these arguments, many techniques have been developed that allow
the computation (approximately) of a subset of natural frequencies and mode
shapes of a structural system modeled by finite elements. While a complete dis-
cussion of the details is beyond the scope of this text, the following discussion
explains the basic premises. (See Bathe [6] for a very good, rigorous description
of the various techniques.) Using our notation, the eigenvalue problem that must
be solved to obtain natural frequencies and mode shapes is written as

[K{A} = w’[M]{A)} (10.179)

The problem represented by Equation 10.179 is reduced in complexity by static
condensation (or, more often, Guyan reduction [11]) using the assumption that
all the structural mass can be lumped (concentrated) at some specific degrees
of freedom without significantly affecting the frequencies and mode shapes of
interest. Using the subscript a (active) to represent degrees of freedom of inter-
est and subscript ¢ (constrained) to denote all other degrees of freedom Equa-
tion 10.179 can be partitioned into

[Kaa] [Kac] {Aa} .2 [Maa] [0] {Aa}

In Equation 10.180, [M,,] is a diagonal matrix, so the mass has been lumped at
the degrees of freedom of interest. The “constrained” degrees of freedom are
constrained only in the sense that we assign zero mass to those degrees. The
lower partition of Equation 10.180 is

[Kca]{Aa} + [ch]{Ac} = {O} (10181)



Hutton: Fundamentals of 10. Structural Dynamics Text
Finite Element Analysis

References

and this equation can be solved as
(A = ~[Ke] ' [Kaal{Ad) (10.182)

to eliminate { A, }. Substituting Equation 10.182 into the upper partition of Equa-
tion 10.180, we obtain

([Kaal — [Kac][ch]il[Kca]){Aa} = wz[Maa]{Aa} (10.183)

as the reduced eigenvalue problem. Note that all terms of the original stiffness
matrix are retained but not those of the mass matrix. Another way of saying this
is that the stiffness matrix is exact but the mass matrix is approximate.

The difficult part of this reduction procedure lies in selecting the degrees of
freedom to be retained and associated with the lumped mass terms. Fortunately,
finite element software systems have such selection built into the software.
The user generally need specify only the number of degrees of freedom to be re-
tained, and the software selects those degrees of freedom based on the smallest
ratios of diagonal terms of the stiffness and mass matrices. Other algorithms are
used if the user is interested in obtaining the dynamic modes within a specified
frequency. In any case, the retained degrees of freedom are most often called
dynamic degrees of freedom or master degrees of freedom.

This discussion is meant to be for general information and does not represent
a hard and fast method for reducing and solving eigenvalue problems. Indeed,
reference to Equation 10.182 shows that the procedure requires finding the in-
verse of a huge matrix to accomplish the reduction. Nevertheless, several power-
ful techniques have been developed around the general reduction idea. These
include subspace iteration [12] and the Lanczos method [13]. The user of a par-
ticular finite element analysis software system must become familiar with the
various options presented for dynamic analysis, as multiple computational
schemes are available, depending on model size and user needs.

10.13 SUMMARY

The application of the finite element method to structural dynamics is introduced in the
general context of linear systems. The basic ideas of natural frequency and mode shapes are
introduced using both discrete spring-mass systems and general structural elements. Use of
the natural modes of vibration to solve more-general problems of forced vibration is em-
phasized. In addition, the Newmark finite difference method for solving transient response
to general forcing functions is developed. The chapter is intended only as a general intro-
duction to structural dynamics. Indeed, many fine texts are devoted completely to the topic.
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PROBLEMS

10.1 Verify by direct substitution that Equation 10.5 is the general solution of
Equation 10.4.

10.2 A simple harmonic oscillator has m = 3 kg, k = 5 N/mm. The mass receives
an impact such that the initial velocity is 5 mm/sec and the initial displacement
is zero. Calculate the ensuing free vibration.

10.3 The equilibrium deflection of a spring-mass system as in Figure 10.1 is
measured to be 1.4 in. Calculate the natural circular frequency, the cyclic
frequency, and period of free vibrations.

10.4 Show that the forced amplitude given by Equation 10.28 can be expressed as

Xo
U=1"g r#l
with X = Fy/k equivalent static deflection andr = w,/w = frequency ratio.

10.5 Determine the solution to Equation 10.26 for the case w;, = w. Note that, for
this condition, Equation 10.29 is not the correct solution.

10.6 Combine Equations 10.5 and 10.29 to obtain the complete response of a simple
harmonic oscillator, including both free and forced vibration terms. Show that,
for initial conditions given by x(t = 0) = x¢ and x(t = 0) = v, the complete
response becomes

Vo . Xo . .
x(t) = — sin ! + x( c0S wf + ——— (sinw,f — r sin wt)
® 1—r2
with X, and r as defined in Problem 10.4.
10.7 Use the result of Problem 10.6 with xo = vy = 0, r = 0.95, X, = 2,

o, = 10 rad/sec and plot the complete response x(¢) for several motion cycles.
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10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

10.16

10.17

10.18

10.19

10.20

Problems

For the problem in Example 10.2, what initial conditions would be required so
that the system moved (a) in the fundamental mode only or (b) in the second
mode only?

Using the data and solution of Example 10.2, normalize the modal matrix per
the procedure of Section 10.7 and verify that the differential equations are
uncoupled by the procedure.

Using the two-element solution given in Example 10.4, determine the modal
amplitude vectors. Normalize the modal amplitude vectors and show that matrix
product [A]" [M][A] is the identity matrix.

The 2 degrees-of-freedom system in Figure 10.4 is subjected to an external
force F, = 10 sin 87 b applied to node 2 and external force F; = 6 sin 4 1b
applied to node 3. Use the normalized modal matrix to uncouple the differential
equations and solve for the forced response of the nodal displacements. Use the
numerical data of Example 10.2.

Solve the problem of Example 10.4 using two equal-length bar elements except
that the mass matrices are lumped; that is, take the element mass matrices as

)= )= 225 Y]

How do the computed natural frequencies compare with those obtained using
consistent mass matrices?

Obtain a refined solution for Example 10.4 using three equal-length elements
and lumped mass matrices. How do the frequencies compare to the two-element
solution?

Considering the rotational degrees of freedom involved in a beam element, how
would one define a lumped mass matrix for a beam element?

Verify the consistent mass matrix for the beam element given by Equation 10.78
by direct integration.

Verify the mass matrix result of Example 10.6 using Gaussian quadrature
numerical integration.

Show that, within the accuracy of the calculations as given, the sum of all terms
in the rectangular element mass matrix in Example 10.6 is twice the total mass
of the element. Why?

What are the values of the terms of a lumped mass matrix for the element in
Example 10.6?

Assume that the dynamic response equations for a finite element have been
uncoupled and are given by Equation 10.120 but the external forces are not
sinusoidal. How would you solve the differential equations for a general forcing
function or functions?

Given the solution data of Example 10.7, assume that the system is changed to
include damping such that the system damping matrix (after setting u; = 0) is
given by

2c —c O
[Cl=]| —¢c 2¢ -—c
0 —c ¢

Show that the matrix product [A]T[CI[A] does not result in a diagonal matrix.

445



Hutton: Fundamentals of 10. Structural Dynamics Text © The McGraw-Hill
Finite Element Analysis Companies, 2004

446 CHAPTER 10 Structural Dynamics

10.21 Perform the matrix multiplications indicated in Equation 10.177 to verify the
result given in Equation 10.178.

10.22  For the truss in Example 10.10, reformulate the system mass matrix using
lumped element mass matrices. Resolve for the frequencies and mode shapes
using the finite element software available to you, if it has the lumped matrix
available as an option (most finite element software includes this option).

10.23 If you formally apply a reduction procedure such as outlined in Section 10.12,
which degrees of freedom would be important to retain if, say, we wish to
compute only four of the eight frequencies?



